TSMC’s Long Path From Round To Square Silicon Wafers

Crystal of Czochralski-grown silicon.
Crystal of Czochralski-grown silicon.

Most of us will probably have seen semiconductor wafers as they trundle their way through a chip factory, and some of us may have wondered about why they are round. This roundness is an obvious problem when one considers that the chip dies themselves are rectangular, meaning that a significant amount of the dies etched into the wafers end up being incomplete and thus as waste, especially with (expensive) large dies. This is not a notion which has escaped the attention of chip manufacturers like TSMC, with this particular manufacturer apparently currently studying a way to make square substrates a reality.

According to the information provided to Nikkei Asia by people with direct knowledge, currently 510 mm x 515 mm substrates are being trialed which would replace the current standard 12″ (300 mm) round wafers. For massive dies such as NVidia’s H200 (814 mm2), this means that approximately three times as many would fit per wafer. As for when this technology will go into production is unknown, but there exists significant incentive in the current market to make it work.

As for why wafers are round, this is because of how these silicon wafers are produced, using the Czochralski method, named after Polish scientist [Jan Czochralski] who invented the method in 1915. This method results in rod-shaped crystals which are then sliced up into the round wafers we all know and love. Going square is thus not inherently impossible, but it will require updating every step of the process and the manufacturing line to work with this different shape.

Increase Your Blinkenlights With This Silicon Wafer Necklace

Necklaces aren’t often very high-tech, mostly because of the abuse they have to go through being worn. This was obviously a problem that needed solving, so [Matt Venn] decided to change that by making a necklace out of ASICs just in time for Supercon.

Although this isn’t the first time [Matt] made such a necklace, he though his previous one was “too hip-hop” and not enough “15 million dollar Nikon Lithography Stepper”. Obviously, this means designing the whole chain, art included, from scratch with the blinkenlights to match. Together with [Pat Deegan] and [Adam Zeloof], the team created a beautiful technopunk necklace with art on every chain link and of course a real silicon wafer with a RISC-V tapeout from 2022 on it.

With [Adam] doing modeling for the chain links, and [Pat] and [Matt] designing the electronics required for the mandatory blinkenlights, and some last-minute soldering and assembling the project was finished just in time for Supercon, where it fit right in with all the other blinkenlights. It even runs on one of the RISC-V cores from the same tapeout as the central wafer!

Making Solar Cells

We will admit that it is unlikely you have enough gear in your basement to make a solar cell using these steps. However, it is interesting to see how a bare silicon wafer becomes a solar cell. If you’ve seen ICs going through fabrication, you’ll see a lot of similarities, but there are some differences.

The process calls for a silicon wafer, some ovens, spin coaters, photolithography equipment, and a dice saw, among other things. Oh, you probably also need a clean room. Maybe you should just buy your solar cells off the shelf, but it is still interesting to see how they are made.

Modern solar cells have some extra structures to improve their efficiency, but the cells in this video are pretty garden-variety. For example, some experimental cells use multiple layers of active devices, each tuned to absorb a different wavelength of light.

If you really want to make your own, there’s another process where you can start with some copper and wind up with a kind of solar cell that uses a copper-based semiconductor material. But don’t be fooled into thinking that making the silicon variety is totally out of reach to hackers, we’ve seen [Sam Zeloof] pull it off.

Continue reading “Making Solar Cells”