DIY Vs. Commercially Made Solar Panel

The price of commercially made solar panels on eBay is around $1 per watt and have been for a few years, but the price of individual solar cells are likewise at a low price per watt, around $0.48.  Looking at those prices, it’s tempting to say that it’d be cheaper to just buy the solar cells and put together your own panels. But is it? Simply adding up all the costs might seem like a good way to tell, but you’d need to make a panel to really see what works and what doesn’t.

Part US$ Euros €
solar cells 53 45
aluminum U-channel 20 17
plexiglass 43 37
adhesive 8 7
clear epoxy resin 40 34
Total $164 140€

And so [GreatScott] did just that, with his own side-by-side comparison. He made a 100-watt solar panel and mounted it on his roof beside his commercially produced 100-watt one and compared their output.

The cost of his DIY panel rose quickly. To make a somewhat comparable panel he needed to buy aluminum U-channels, clear epoxy resin, and more. Shown here is the breakdown of his costs.

His commercial 100 watt solar panel would cost him $103 today (87.90€). Compare that to his $164 DIY panel. Also, his DIY one likely won’t weather as well as the commercial one and may not handle high temperatures as well either. You can see the results of his testing in the video below, along with all his construction steps.

Another component open to DIYers in a solar system is the charge controller which takes the solar panel’s output and uses it to charge the battery, with added features like MPPT. Check out this DIY charge controller with MPPT and WiFi for data logging.

Continue reading “DIY Vs. Commercially Made Solar Panel”

Energy Harvesting Design Doesn’t Need Sleep

Every scrap of power is precious when it comes to power harvesting, and working with such designs usually means getting cozy with a microcontroller’s low-power tricks and sleep modes. But in the case of the Ultra Low Power Energy Harvester design by [bobricius], the attached microcontroller doesn’t need to worry about managing power at all — as long as it can finish its job fast enough.

The idea is to use solar energy to fill a capacitor, then turn on the microcontroller and let it run normally until the power runs out. As a result, a microcontroller may only have a runtime in the range of dozens of microseconds, but that’s just fine if it’s enough time to, for example, read a sensor and transmit a packet. In early tests, [bobricius] was able to reliably transmit a 16-bit value wirelessly every 30 minutes using a small array of photodiodes as the power supply. That’s the other interesting thing; [bobricius] uses an array of BPW34 photodiodes to gather solar power. The datasheet describes them as silicon photodiodes, but they can be effectively used as tiny plastic-enclosed solar cells. They are readily available and can be arranged in a variety of configurations, while also being fairly durable.

Charging a capacitor then running a load for a short amount of time is one of the simplest ways to manage solar energy, and it requires no unusual components or fancy charge controllers. As long as the load doesn’t mind a short runtime, it can be an effective way to turn even indoor light into a figuratively free power source.

Home Brew Solar Cells for the Chemically Curious

The idea of making your own semiconductors from scratch would be more attractive if it weren’t for the expensive equipment and noxious chemicals required for silicon fabrication. But simple semiconductors can be cooked up at home without anything fancy, and they can actually yield pretty good results.

Granted, [Simplifier] has been working on the method detailed in the video below for about a year, and a look at his post on copper oxide thin-film solar cells reveals a meticulous approach to optimize everything. He started with regular window glass, heated over a propane burner and sprayed with a tin oxide solution to make it conductive while remaining transparent. The N-type layer was sprayed on next in the form of zinc oxide doped with magnesium. Copper oxide, the P-type layer, was electroplated on next, followed by a quick dip in copper sulfide to act as another transparent conductor. A conductive compound of sodium silicate and graphite was layered on the back to form the electrical contacts. The cell worked pretty well — 525 mV open circuit voltage and 6.5 mA short-circuit current. Not bad for home brewed.

If you want to replicate [Simplifier]’s methods, you’ll find his ample documentation of his site. Of course, if you yearn for DIY silicon semiconductors, there’s a fab for that, too.

Continue reading “Home Brew Solar Cells for the Chemically Curious”

Making Solar Cells

We will admit that it is unlikely you have enough gear in your basement to make a solar cell using these steps. However, it is interesting to see how a bare silicon wafer becomes a solar cell. If you’ve seen ICs going through fabrication, you’ll see a lot of similarities, but there are some differences.

The process calls for a silicon wafer, some ovens, spin coaters, photolithography equipment, and a dice saw, among other things. Oh, you probably also need a clean room. Maybe you should just buy your solar cells off the shelf, but it is still interesting to see how they are made.

Modern solar cells have some extra structures to improve their efficiency, but the cells in this video are pretty garden-variety. For example, some experimental cells use multiple layers of active devices, each tuned to absorb a different wavelength of light.

If you really want to make your own, there’s another process where you can start with some copper and wind up with a kind of solar cell that uses a copper-based semiconductor material. But don’t be fooled into thinking that making the silicon variety is totally out of reach to hackers, we’ve seen [Sam Zeloof] pull it off.

Continue reading “Making Solar Cells”

Smart DC Tester Better than a Dummy Load

Testing DC supplies can be done in many ways, from connecting an actual load like a motor, to using a dummy load in the manner of a big resistor. [Jasper Sikken] is opening up his smart tester for everyone. He is even putting it on Tindie! Normally a supply like a battery or a generator would be given multiple tests with different loads and periodic readings. Believe us, this can be tedious. [Jasper Sikken]’s simulated load takes away the tedium and guesswork by allowing the test parameters to be adjusted and recorded over a serial interface. Of course, this can be automated.

In the video after the break, you can see an adjustment in the constant-current mode from 0mA to 1000mA. His supply, meter, and serial data all track to within one significant digit. If you are testing any kind of power generator, super-capacitor, or potato battery and want a data log, this might be your ticket.

We love testers, from a feature-rich LED tester to a lead (Pb) tester for potable water.

Continue reading “Smart DC Tester Better than a Dummy Load”

Finally, A Calculator For The Atomic Age!

In the 1950s, a nuclear-powered future seemed a certainty. The public had not been made aware of the dangers posed by radioactive material, any large-scale accidents involving nuclear reactors had either been hushed up or were yet to happen, and industry and governments were anxious to provide good PR to further their aims. Our parents and grandparents were thus promised a future involving free energy from nuclear reactors in all sorts of everyday situations.

With the benefit of hindsight, we of course know how the story turned out. Windscale, Three Mile Island, Chernobyl, and Fukushima, and we’re still waiting for our atomic automobiles.

If you have a hankering for nuclear-powered domestic appliances though, all is not lost. [GH] is leading the charge towards a future of atomic energy, with a nuclear-powered calculator. It’s not quite what was promised in the ’50s, but it is nevertheless a genuine appliance for the Atomic Age. At its heart is not a 1950s-style fission reactor though, but a tritium tube. Beta particles from the tritium’s decay excite a phosphor coating on the tube’s inside wall, producing a small amount of light. This light is harvested with a solar cell, and the resulting electrical energy is stored in an electrolytic capacitor. The cell has an open-circuit voltage of 1.8 V, and the 100 μF capacitor in question stores a relatively tiny 162 μJ. From this source, a dollar store calculator can operate for about 30 sec, so there should be no hanging about with your mathematics.

We’ve brought you a tritium battery before, albeit a slightly larger one. And should you need the comforting glow of a tritium tube but not the radiation risk, how about this LED-based substitute?

Sending Music Long Distance Using A Laser

This isn’t the first time we’ve seen DIYers sending music over a laser beam but the brothers [Armand] and [Victor] are certainly in contention for sending the music the longest distance, 452 meter/1480 feet from their building, over the tops of a few houses, through a treetop and into a friend’s apartment. The received sound quality is pretty amazing too.

In case you’ve never encountered this before, the light of the laser is modulated with a signal directly from the audio source, making it an analog transmission. The laser is a 250mW diode laser bought from eBay. It’s powered through a 5 volt 7805 voltage regulator fed by a 12V battery. The signal from the sound source enters the circuit through a step-up transformer, isolating it so that no DC from the source enters. The laser’s side of the transformer feeds the base of a transistor. They included a switch so that the current from the regulator can either go through the collector and emitter of the transistor that’s controlled by the sound source, giving a strong modulation, or the current can go directly to the laser while modulation is provided through just the transistor’s base and emitter. The schematic for the circuit is given at the end of their video, which you can see after the break.

They receive the beam in their friend’s apartment using solar cells, which then feed a fairly big amplifier and speakers. From the video you can hear the surprisingly high quality sounds that results. So check it out. It also includes a little Benny Hill humor.

Continue reading “Sending Music Long Distance Using A Laser”