Freezing Stuff With Fricken’ Lasers

For almost two decades there has been research that describes a method to freeze material with nothing but a laser. The techniques have only ever been able to work on single nano-crystals in a vacuum, making it less than functional — or practical. Until now, that is.

Researchers at the University of Washington have figured out how to cool a liquid indirectly using an infrared laser. It works by subjecting a special microscopic crystal to the laser. When the laser hits this crystal, the infrared light turns to the visible spectrum, becoming a reddish green light — which happens to be more energetic than infrared. This shift in energy levels is what causes a change in temperature. The energy (in the way of heat) is sucked from the fluid surrounding the crystal, and as such, causes a drop in the temperature of the liquid. Continue reading “Freezing Stuff With Fricken’ Lasers”

Full-size MRI Machine Replica

Foam MRI machine

It’s been a bit dusty lately in Seattle’s Metrix Create:Space. That’s because they’ve taken on their biggest project yet — a full scale replica of an MRI machine for university research.

[Tom Grabowski], a professor of Radiology & Neurology at the University of Washington, needed a replica MRI machine. This is because time on real MRI machines is very expensive, and when performing research on Autism, it is important to get the test subjects used to the process before using the real deal. He originally turned to the Center for Human Development and Disability, also at the University of Washington, but the project was just simply too big for their facilities. He did however get to meet a fellow researcher named [Fritz] who then contacted Metrix to see if it was possible, and like any good hackers, the members of the space were more than up for the challenge.

The replica MRI machine is made out 2″ thick, 4′ by 8′ foam insulation sheets, which is the maximum size their router can handle. Not having made use of the 3D z-cutting capabilities before, they had a bit of learning to do, but as you can see from the pictures, it worked out quite well. Over a few weeks they were able to construct the general shape of the MRI machine, and finish the surface nicely — it’s far from complete though, as they might even be adding lights and other features to make it one heck of a replica. It’s a great project, and those who have helped are happy to do so as the replica will benefit not only [Tom] but many other researchers at UW — for science, yeah!

Low-power Wireless Home Automation Sensors

The line between serious research and well-executed hacks has been getting pretty blurry lately. The device above could have been designed in your basement but it actually comes from researchers at the University of Washington. They are working on low-power home automation sensors for monitoring things like humidity, temperature, air quality, and light. The key point in their research has been the use of a home’s electrical system for wireless communication. Operating at 27 MHz has proven quite efficient to the point that one of these modules placed within 10-15 feet of an electrical run can communicate with the rest of the home, powered only by a watch battery projected to last ten years.

That’s kind of exciting, it’s a heck of a lot easier to produce and distribute a set of small boards like this than to run communication wiring throughout the house. Now we just need to pair this with the Air Force’s parasitic power work and there’ll be no need for a battery at all.

[Thanks Sidhant]