Finding The Linear In A Laser

If your path has taken you through any work with hi-fi audio, you will be aware of the effects of distortion on sound quality. The tiniest non-linearity in a component can ruin the result, and people who work at the extreme end of the hi-fi spectrum will go to impossible lengths to chase the tiniest percentages of distortion that no human could possibly hear.

[Monta Elkins] has a Boldport kit, the Lite2Sound, which as its name suggests translates a light level to an audio signal. Given a laser diode and a source of country music from his Amazon Echo then, perhaps he could transmit the sound across a beam of laser light. And given that the Lite2Sound is an all-analogue device so unless it incorporates a low-pass filter it might struggle with PWM, to achieve that feat he would have to modulate the country music directly onto the laser light.

In the video below he shows us how he characterised his laser diode by plotting its VI curve on an oscilloscope, and identified its most linear region. He was then able to supply a voltage in the middle of that region, and simply overlay the line level audio from the Echo through an RC network. The result is a successful transmission of music via laser that sounds OK, though we’d find it interesting to see what an audio analyser would make of it. We’d also be interested to know whether the VI curve also maps to the same profile in the light intensity, we suspect the answer would be “close enough”.

So laser wireless audio can be done, and anyone who points out that the same feat could have been achieved with Bluetooth is spoiling the fun. After all, what’s a hi-fi without Frickin’ lasers!

Continue reading “Finding The Linear In A Laser”

Shining a Light on Hearing Loss

When auditory cells are modified to receive light, do you see sound, or hear light? To some trained gerbils at University Medical Center Göttingen, Germany under the care of [Tobias Moser], the question is moot. The gerbils were instructed to move to a different part of their cage when administrators played a sound, and when cochlear lights were activated on their modified cells, the gerbils obeyed their conditioning and went where they were supposed to go.

In the linked article, there is software which allows you to simulate what it is like to hear through a cochlear implant, or you can check out the video below the break which is not related to the article. Either way, improvements to the technology are welcome, and according to [Tobias]: “Optical stimulation may be the breakthrough to increase frequency resolution, and continue improving the cochlear implant”. The first cochlear implant was installed in 1964 so it has long history and a solid future.

This is not the only method for improving cochlear implants, and some don’t require any modified cells, but [Tobias] explained his reasoning. “I essentially took the harder route with optogenetics because it has a mechanism I understand,” and if that does not sound like so many hackers who reach for the tools they are familiar with, we don’t know what does. Revel in your Arduinos, 555 timers, transistors, or optogenetically modified cells, and know that your choice of tool is as powerful as the wielder.

Optogenetics could become a hot ticket at bio maker spaces. We have talked about optogenetics in lab rodents before, but it also finds purchase in zebrafish and roundworm.

Continue reading “Shining a Light on Hearing Loss”

HOPE XII: Make Your Own Holograms

Prior to this weekend I had assumed making holograms to be beyond the average hacker’s reach, either in skill or treasure. I was proven wrong by a Club-Mate box full of electronics, and an acrylic jig perched atop an automotive inner tube. At the Hope Conference, Tommy Johnson was sharing his hacker holography in a workshop that let a few lucky attendees make their own holograms on site!

The technique used here depends on interference patterns rather than beam splitting. A diffused laser beam is projected through holographic film onto the subject of the hologram — say a bouquet of flowers like in the video below. Photons from that beam reflect from the bouquet and pass back through the film a second time. Since light is a form of electromagnetic radiation that travels as a wave, anywhere that two peaks (one from the beam the other from the reflected light) align on the film, exposure occurs. With just a 1/2 second exposure the film is ready to be developed, and if everything went right you have created a hologram.

Simple, right? In theory, at least. In practice Tommy’s been doing this for nearly 30 years and has picked up numerous tips along the way. Let’s take a look at the hardware he brought for the workshop.

Continue reading “HOPE XII: Make Your Own Holograms”

Expanding the K40 Laser Cutter with Aluminum Extrusion

The K40 laser cutter is an excellent option if you need to laze some plywood or acrylic. It’s ubiquitous, it’s cheap, and there’s a vast community out there that will help you support any issue you could have. Unfortunately, the K40 laser cutter is lacking. It has a small bed, and it doesn’t have the latest technology like ‘switches’ that turn off the laser when you open the door.

[frederik] recently upgraded his K40 to something great. He’s calling it the Layzor, and it has a huge 600×400 mm bed area, a feed-through slot for even wider workpieces, and fancy technology [frederik] is calling an ‘E-stop’. Sounds expensive, doesn’t it?

The build began by scavenging the K40 laser cutter for the electronics and laser tube, then building a new frame out of aluminum extrusion. A few parts had to be custom made, including a few stepper motor mounts and something to hold the laser tube. All of this was tied up in a box with acrylic panels, and went together as easily as any other CNC machine.

The finished project is great. It’s a relatively powerful laser cutter capable of most hobby work, and it was cheap. The total cost for this build was under €500. That’s not including the scavenged K40, but that’s still an amazing price for a very capable laser cutter.

Dual Source Laser Cutter Built Like a Tank, Cuts Most Anything

Laser cutters aren’t the sort of thing that you might think about making at home, but there’s no reason not to if you are careful and do your research. That’s what [Daniele Ingrassia] did with the Laser Duo, an open source laser cutter that has two light sources for cutting various materials. His final product is not a small device: it has a press-formed aluminum case that looks more like a World War I tank than a piece of precision machinery. But that’s for a good reason: you don’t mess about with lasers, especially the 130 Watt CO2 and 75 Watt Yag lasers that the Laser Duo uses. Continue reading “Dual Source Laser Cutter Built Like a Tank, Cuts Most Anything”

Chinese Laser AK-47: Myth Or Reality?

 

Chinese company ZKZM Laser has produced the ZKZM-500 laser assault rifle which people are calling the Chinese AK-47 because of its similar size, weighing in at three kilos (6.6 lbs). Claims of its capabilities, however, are being disputed.

The South China Morning Post writes that the company claims the laser to:

  • be powered by a rechargeable lithium battery back,
  • have a range of 800 meters (0.5 miles),
  • have a beam that is invisible to the eye,
  • be able to fire 1000 “shots”, each no longer than two seconds,
  • be able to burn human flesh if held in place long enough,
  • be able to set fire to clothes and hair, and
  • be able to set fire to banners from a distance.

Burning things with lasers is nothing new but the disputes are mostly based around such a small laser being effective at an 800 meter range. To be fair, while the 800 meter range claim is everywhere, the Post writes that the company brochure says the range is 500 meters (0.3 miles), still quite a long distance.

[styropyro], a YouTuber with a lot of experience with lasers has done an analysis, starting by deducing a wavelength of around 2000 nanometers. He finds that at 800 meters the beam would have dispersed to a diameter of 26 cm (10 inches) and produce 53 W over that area. (EDIT: The 53 W is how much sunlight would produce for that area. In the video he carries the calculations further to work out the minimum power needed, ignoring losses, to light the cotton on fire, 645 W.) For 500 meters, using the same formula we calculate that the dispersion would be a diameter of 16 cm (6 inches) with 500 W spread over that area, which would get uncomfortable very fast, think of half a square meter of sunlight focused down to a circle of that diameter. (EDIT: Again, this it 500 W for sunlight, the laser produces more.) His video doesn’t include enough detail for us to replicate the remainder of the calculations so we’ll just have to go with the 800 meter claim. See the video below for his full analysis. If anyone else has any experience that’ll either support or dispute the claims then please share it with us in the comments.

After all the disputes against their claim, the Chinese company did produce a video firing the laser from a shorter distance. Check it out on this page by the post.

While waiting to see how much truth there is to the Chinese company’s claims we can sit back and enjoy [styropyro’s] home-brew high power ruby laser, both his build and him doing some serious damage with it.

Oh, and don’t try this at home. It’s probably in violation of the Geneva Convention on Certain Conventional Weapons in addition to common sense.

Continue reading “Chinese Laser AK-47: Myth Or Reality?”

Worn Train Rails Get Judged by Laser

[Calango] is a railway technician, and for a school final project created the Rail Wear Surveillance Trolley (RWST) which is a delightfully designed device made mainly from PVC conduit with one job: travel down a segment of train track while shining a green laser onto the rail, and capture camera images. The trolley holds both the laser and the camera at just the right angles for the camera to capture a profile of the rail’s curved surface. The images are sent via Bluetooth to a smartphone for later analysis. Rail wear can be judged by checking how well the profile of the rail conforms to the ideal profile of an unworn segment. The trolley is manually pushed by an operator, but [Calango] says that ideally, it would be self-propelled and able to inspect a length of the track then return on its own.

The project was made on a tight budget, which led to some clever solutions like using a rotary encoder attached to a wheel as a makeshift distance sensor. If things get desperate enough, it’s even possible to roll your own rotary encoder with a 3D printer and two microswitches.