Making A Mechanical Watch From Scratch Is Fine Work

There are plenty of hard jobs out there, like founding your country’s nuclear program, or changing the timing chain on a BMW diesel. Making your own mechanical watch from scratch falls under that umbrella, too. And yet, [John Raffaelli] did just that, and prevailed!

That’s a lot of work.

Only a handful of components were purchased—[John] grabbed jewels, sapphire crystals, the strap, and the hairspring and mainspring off the shelf. Everything else, he made himself, using a fine touch, a sharp eye, and some deft work on his machine tools. If you’ve never worked at this scale before, it’s astounding to see—[John] steps through how he produced tiny pinions and balance wheels that exist at sub-fingertip scale. Even just assembling something this tiny would be a challenge, but [John] was able to craft it all from scratch and put it together into a functioning timepiece when he was done.

The final piece doesn’t just look great—we’re told it keeps good time as well. People like [John] don’t come along every day, though we do have one similar story in our deep archives from well over a decade ago. If you’re cooking up your own bespoke time pieces in your home workshop, don’t hesitate to drop your story on the tipsline!

Tiny Orrery Is A Watchmaker’s Tour De Force

Six tiny gears, a few fancy pins, and some clever casting are what it takes to build this tiny orrery. And patience — a lot of patience, too.

As model solar systems go, this one is exceptionally small. Its maker, [Mike] from Chronova Engineering, says it measures about 20 mm across and qualifies as the smallest orrery around. We can’t officiate that claim, but we’re not going to argue with it either. It’s limited to the Sun-Earth-Moon system, and while not as complete as some other models we’ve seen, it’s still exquisitely detailed. The gears that keep the Moon rotating 12.4 times around the Earth for each rotation of our home planet around the Sun are tiny, and take an abundance of watchmaking skill to pull off.

The video below shows the whole process, which is absolutely entrancing to watch. There are some neat tricks on display, from milling out the arms of the main wheel using a powered tailstock spindle to casting the Sun from resin in a silicone mold. The final model, with the model Earth and Moon spinning around the Sun on delicate brass wheels, is a visual treat.

We’ve seen some interesting stuff from Chronova Engineering lately, including this bimetallic tea timer.

Continue reading “Tiny Orrery Is A Watchmaker’s Tour De Force”

Because It’s Cool To Make A Watch That Thin

Recently [Richard Mille] and Ferrari (yes, that Ferrari) announced the thinnest mechanical watch ever made, the RM UP-01.

It measures a scant 1.75mm thick (~1/16 of an inch). The aesthetic is debatable, and the price tag is not even listed on the page, but we suspect it is a rather significant sum. But setting aside those two things, we’d like to step back and appreciate this as a piece of art. This is not a practical watch by any stretch of the imagination. This watch is the equivalent of a human-powered airplane. Impractical, costly, and not as effective as other modern mechanically-powered solutions. But that doesn’t make it any less impressive.

Since it is so thin, a regular stacked assortment of gears wasn’t an option. So instead, the gears were distributed over the watch’s surface, which led to a thin watch face. This means that winding is manual to save space, and a single winding will last around 45 hours. The heartbeat of any mechanical watch is the escapement. So they had to redesign the escapement to be flatter, doing away with the guard pin and the safety roller, instead using the anchor fork to bank the lever in case of unexpected forces or shocks.

The design is incredible but perhaps just as noteworthy is the fact that it could be machined. Machined out of titanium with a micron of accuracy, which is an incredible feat if you’ve seen a savage discussion of measurements. The smaller and more accurate you get, the steeper the difficulty curve.

A short teaser is available after the break.

Continue reading “Because It’s Cool To Make A Watch That Thin”

A New Method For Growing Watch Springs

Scientists at the Swiss Federal Laboratories for Materials Science and Technology (Empa) recently developed a new technique for growing watch springs to tiny specifications. As it turns out, the creation of watch springs is ripe with opportunity for new materials research.

The technique involves using photo-etching and electrochemical deposition into cold, aqueous solutions. Compared to drawing and winding Nivarox wires, this is a fairly unconventional method for manufacturing. For as long as watchmaking has been around, creating the balance springs has been one of the most difficult parts of the job. The wires must be drawn to a thickness in the hundredths of millimeters and wound and tempered to the exact hardness, ductility, and elasticity while compensating for environmental factors. Many substances change their properties during fabrication, so the Empa team decided to look to pure materials research as a way to find a means for fabricating balance springs that would remain stable.

They took silicon wafers (the same kind used for solar panels and computer chips), covered them in gold and a thin layer of light sensitive paint, and etched the shape of a spring into the wafer. The wafer was then dipped into a galvanic bath containing a salt solution from a metallic alloy — the spring acts as a cathode so that when an electric current passes through the bath, metal is deposited at the base of the spring. Once the spring is built up, it is dissolved from the mold and examined. After a bit of smoothing, the final spring is washed and sent to a lab for prototype production.

The electroplated springs are currently on display at the Laboratory for Mechanics of Materials and Nanostructures at the Empa campus in Thun, Switzerland. In the meantime, the first pilot tests are being wrapped up, and the team is beginning to work with Swiss watchmakers to see if their springs can hold up inside watch mechanisms.

[Thanks to Qes for the tip!]