WISP Adds Wifi To The Internet Of Things

The guys over at embdSocial sent in a project they’ve been working on for a while. It’s a small wifi module for an Arduino or other microcontroller called Wisp. Unlike the many, many other wifi breakout boards we’ve seen, the Wisp has a truly incredible amount of potential. With an API that allows an Arduino to post to Twitter, sending text messages, and even has remote admin capabilities, the embedSocial team came up with something really cool.

We’ve seen our fair share of projects that use wifi, but the Wisp is amazingly clever as to how projects can be controlled. Each Wisp is administered through the Internet. Once a Wisp is registered to your online embdSocial account you can upload new code without ever physically connecting a microcontroller to your computer.

To demonstrate the remote administration capabilities of the Wisp, the embdSocial guys put an Arduino and Wisp inside an electrical junction box. With their setup, the guys have the simplest and smallest Internet connected power outlet we’ve ever seen.

After the break, you can see a demo of a Wisp opening a garage door and a remotely operated, web enabled airsoft turret. We’re loving that the turret sends video from the gun to any device on the Internet, and it’s impressive that [Chris] and [Art] whipped up both these projects in a single weekend. There’s also a Kickstarter for the Wisp, so here’s to hoping we can pick one of these up soon.

Continue reading “WISP Adds Wifi To The Internet Of Things”

Electric Imp Connects Projects To The Internet

If you’re planning a build that communicates wirelessly to that ‘Internet of things’ we’ve been hearing about, you might want to check out the Electric Imp. This tiny little card connects your project to the Internet without all the hassle of configuring an embedded wireless device.

Inside the Electric Imp is a good bit of hardware: an ARM CortexM3, and an 802.11b/g/n wi-fi module that will connect to your wireless network automatically. There are also a few pins left over for serial, I2C, SPI and PWM applications.

Instead of manually configuring the DNS and WPA encryption, the Electric Imp does all of this automatically. We have no idea how the Electric Imp configures itself, but we’d bet it’s something along the lines of plugging the SD card-sized Imp into a computer and piggybacking off the computer’s credentials. The Imp also uses a cloud service, but we’ll bet once Imps are out in the wild, you’ll be able to use them with your own network.

The Electric Imp card itself will sell for about $25, but there are also dev kits to turn the Imp into an Arduino-compatible board. If everything goes as planned, the Imp will be released sometime this summer; we’ll probably see a few Electric Imp projects finished before August.

EDIT: [Kevin] over at Electronic Imp wrote in and told us about the configuration process:

We have an iOS and Android app where the user enters their wireless network’s SSID and the password, then they hold the screen up to the Imp. There’s a photosensor in the Imp that picks up the phone’s flashing and configures the device optically, without the need of plugging it in to a computer, setting up a temporary network for config, or any other cumbersome mechanisms.

We’re basically looking at a much cooler version of the Timex Datalink here. Awesome.

Fancy Telemetry Control Display For A Quadcopter

Most of the quadcopter projects that we’ve seen use a joystick-based control system. This lets you fly the thing around like any RC vehicle. But [Saulius] is augmenting his control system by pulling and displaying telemetry data. It doesn’t really change the way the vehicle is controller, but it lets the craft roam much further away because the operator can watch the computer screen and forego the need for the quadcopter to be within sight.

A Carambola board (also used in this weather station project) is used to provide connectivity. This is WiFi based, which helps us understand the range it can travel. The quadcopter carries a camera, which is shown in the lower right box of the image above. There is also an artificial horizon, and feedback dials which display the telemetry data.

It looks like there’s a satellite view in between those two dashboard widgets. We don’t see anything coming up right now, but it’s possible this is meant to overlay a virtual marker for the aircraft’s position based on GPS data. That last part is really just conjecture though. Catch the 80-second test flight after the jump.

Continue reading “Fancy Telemetry Control Display For A Quadcopter”

Old Radio + Old Phone = Android Media Station

[Bjørn] combined some aging electronics he had around the house to create this Android media center. The enclosure is an FM-radio, but since he only listens to online media it wasn’t of much use to him. After sizing it up he realized it was a perfect candidate to receive his old HTC Hero Android phone.

The upper portion of the stock radio used to host controls for tuning the FM dial, adjusting volume, and switching the unit on and off. He cracked open the case, ditching the radio receiver and patching in to the amplifier. The volume knob was moved to the right side of the case, and a hole cut to receive the phone. Audio is pulled from the phone with the jack sticking out the left side. We’d love to see a future improvement using a right-angle jack (kind of like this charging hack) or patched directly into the phone’s circuit board. This way everything would fit inside the box.

Now he can listen to Internet radio, or stream some video like in the clip after the break.

Continue reading “Old Radio + Old Phone = Android Media Station”

Data Broacasting “Transparency Grenade” Ads Whimsy To Your Meetings

If you’re tired of underhanded deals going down behind closed doors maybe you need to start carrying around this transparency grenade. The enclosure is modeled after a Soviet-era F1 Hand Grenade. But it’s not filled with explosives and won’t send deadly shrapnel around the room. Instead, when the pin is pulled it starts recording audio and sniffing network packets, then broadcasts both to a remote server. Perhaps you could consider this to be data shrapnel sent around the world.

The exploded parts image above shows what hardware is at use. There’s a Gumstix board at the heart of the device which uses a WiFi module for sniffing and broadcasting data. The LED bar graph which you see in the fully assembled unit shows the wireless signal strength.

It sounds like the enclosure itself was 3D printed from Tusk2700T translucent resin but we’re a little confused by this part of the hardware description. We don’t have much of a need to transmit recordings of our meetings, but we’d love to use this case design for that MP3 enclosure.

[via Reddit]

WiFi Experiments With ATtiny Microcontrollers

[Quinn Dunki] got some free stuff from Element14 to evaluate, including this Mircrochip WiFi module. It’s been used as the centerpiece of an Arduino shield in the past, and she grabbed a copy of that library to see if it would play nicely with an ATtiny chip. What follows is a struggle to de-Arduino the code so that it’s portable for all AVR controllers.

This module is one of the least expensive ways to add WiFi to a project, coming in at around $23. But it’s not really an all-in-one solution as there’s still a huge software hurdle to cross. The hardware provides access to to radio functions needed to communicate with the network, but you need to supply the TCP/IP stack and everything that supports it. Hence the re-use of the Arduino library.

Battling adversity [Quinn] fought the good fight with this one. Switching from an ATtiny to the ATmega168, compiling more code, and troubleshooting the process. She used a single LED as feedback, and can get some connectivity with her hotspot. But to this point she hasn’t gotten everything up and running.

We’re hot for an AVR WiFi solution that is cheap and easy to use. But as we see here, the software is complex and perhaps best left up to beefier hardware like the ARM controllers. What do you think?

A Chink In The Armor Of WPA/WPA2 WiFi Security

Looks like your WiFi might not be quite as secure as you thought it was. A paper recently published by [Stefan Viehböck] details a security flaw in the supposedly robust WPA/WPA2 WiFi security protocol. It’s not actually that protocol which is the culprit, but an in-built feature called Wi-Fi Protected Setup. This is an additional security protocol that allows you to easily setup network devices like printers without the need to give them the WPA passphrase. [Stephan’s] proof-of-concept allows him to get the WPS pin in 4-10 hours using brute force. Once an attacker has that pin, they can immediately get the WPA passphrase with it. This works even if the passphrase is frequently changed.

Apparently, most WiFi access points not only offer WPS, but have it enabled by default. To further muck up the situation, some hardware settings dashboards offer a disable switch that doesn’t actually do anything!

It looks like [Stephan] wasn’t the only one working on this exploit. [Craig] wrote in to let us know he’s already released software to exploit the hole.