RP2040 Boot Loader Is A Worm

[Hunter Adams] has written a secondary bootloader for the RP2040 that uses an IR link and can be extended to behave like a polite worm virus. This allows the easy updating of a large cluster of co-located RP2040-based controllers. This could be handy in applications like swarm robotics or virtual cattle fencing. The project he demonstrates in the two videos ( below the break ) uses a pair of IR transmitters/receivers. But he purposely wrote the boot loader to be independent of the serial link, which could be infrared, radio, audio, or just wires.

Not only did [Hunter] make a boot loader, but he documented the entire boot process of the RP2040 chip. Whether or not you need a secondary bootloader, this is an excellent resource for understanding how the RP2040 responds to power cycling and resets. The boot loader code is available at his GitHub repository.

You may recall that [Hunter] is the lecturer of Cornell University’s Designing with Microcontroller classes, whom we’ve mentioned before. We’ve also covered some of his students’ projects as well, like these air drums and this CoreXY pen plotter.

Continue reading “RP2040 Boot Loader Is A Worm”

Optogenetics For 100 Euros

Larval zebrafish, Drosophila (fruit fly), and Caenorhabditis elegans (roundworm) have become key model organisms in modern neuroscience due to their low maintenance costs and easy sharing of genetic strains across labs. However, the purchase of a commercial solution for experiments using these organisms can be quite costly. Enter FlyPi: a low-cost and modular open-source alternative to commercially available options for optogenetic experimentation.

One of the things that larval zebrafish, fruit flies, and roundworms have in common is that scientists can monitor them individually or in groups in a behavioural arena while controlling the activity of select neurons using optogenetic (light-based) or thermogenetic (heat-based) tools.

FlyPi is based on a 3D-printed mainframe, a Raspberry Pi computer, and a high-definition camera system supplemented by Arduino-based optical and thermal control circuits. FlyPi features optional modules for LED-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature simulator for thermogenetics. The complete version with all modules costs approximately €200 with a layman’s purchasing habits, but for those of us who live on the dark side of eBay or the depths of Taobao, it shouldn’t cost more than €100.

Once assembled, all of the functions of FlyPi can be controlled through a graphical user interface. As an example for how FlyPi can be used, the authors of the paper document its use in a series of “state-of-the-art neurogenetics experiments”, so go check out the recently published open access paper on PLOS. Everything considered the authors hope that the low cost and modular nature, as well as the fully open design of FlyPi, will make it a widely used tool in a range of applications, from the classroom all the way to research labs. Need more lab equipment hacks? Don’t worry, we’ve got you covered. And while you’re at it, why not take a spin with the RWXBioFuge.

Botnet Attack Via P2P Software


P2P networks have long been a legal gray area, used for various spam schemes, illegal filesharing, and lots and lots of adware. Last year, though, the first botnet created by a worm distributed via P2P software surfaced, the work of 19-year-old [Jason Michael Milmont] of Cheyenne, Wyoming, who distributed his Nugache Worm by offering free downloads of the P2P app Limewire with the worm embedded. He later began distributing it using bogus MySpace and Photobucket links shared via chats on AOL Instant Messenger. The strategy proved effective, as the botnet peaked with around 15,000 bots. [Milmont] has plead guilty to the charges against him. Per his plea agreement, he will pay $73,000 in restitution and may serve up to five years in prison.