Remotely Get Root On Most Smart TVs With Radio Signals

[Rafael Scheel] a security consultant has found that hacking smart TVs takes nothing much more than an inexpensive DVB-T transmitter, The transmitter has to be in range of the target TV and some malicious signals. The hack works by exploiting hybrid broadcast broadband TV signals and widely known about bugs in web browsers commonly run on smart TVs, which seem run in the background almost all the time.

Scheel was commissioned by Cyber security company Oneconsult, to create the exploit which once deployed, gave full root privileges enabling the attacker to setup and SSH into the TV taking complete control of the device from anywhere in the world. Once exploited the rogue code is even unaffected by device reboots and factory resets.

Once a hacker has control over the TV of an end user, he can harm the user in a variety of ways, Among many others, the TV could be used to attack further devices in the home network or to spy on the user with the TV’s camera and microphone. – Rafael Scheel

Smart TV’s seem to be suffering from  IoT security problems. Turning your TV into an all-seeing, all-hearing surveillance device reporting back to it’s master is straight out of 1984.

A video of a talk about the exploit along with all the details is embedded below.
Continue reading “Remotely Get Root On Most Smart TVs With Radio Signals”

Friday Hack Chat: Breaking Security with Samy Kamkar

[Samy Kamkar] is a hardware hacker extraordinaire. This week, he’s joining us on Hackaday.io for this week’s Hack Chat.

Every week, we find someone interesting that makes or breaks the electronic paraphernalia all around us. We sit them down, and get them to spill the beans on how this stuff works, and how we can get our tools and toys to work for everyone. This is the Hack Chat, and it’s happening this Friday, April 7, at noon PDT (20:0 UTC).

Over the years, [Samy] has demonstrated some incredible skills and brought us some incredible hacks. He defeated chip and pin security on a debit card with a coil of wire, exploited locked computers with a USB gadget, and has more skills than the entire DEF CON CFP review board combined. If you want to know about security, [Samy] is the guy you want to talk to.

Here’s How To Take Part:

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging.

Log into Hackaday.io, visit that page, and look for the ‘Join this Project’ Button. Once you’re part of the project, the button will change to ‘Team Messaging’, which takes you directly to the Hack Chat.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Upcoming Hack Chats

We’ve got a lot on the table when it comes to our Hack Chats. On April 14th we’ll be talking custom silicon with SiFive and on April 21st, we’re going to be talking magnets with Nanomagnetics. Making magnets, collecting magnets, playing with magnets, it’ll all be over on the Hack Chat.

Gigabytes the Dust with UEFI Vulnerabilities

At this year’s BlackHat Asia security conference, researchers from Cylance disclosed two potentially fatal flaws in the UEFI firmware of Gigabyte BRIX small computers which allow a would-be attacker unfettered low-level access to the computer.

Gigabyte has been working on a fix since the start of 2017. Gigabyte are preparing to release firmware updates as a matter of urgency to only one of the affected models — GB-BSi7H-6500 (firmware vF6), while leaving the — GB-BXi7-5775 (firmware vF2) unpatched as it has reached it’s end of life. We understand that support can’t last forever, but if you sell products with such a big fault from the factory, it might be worth it to fix the problem and keep your reputation.

The two vulnerabilities that have been discovered seem like a massive oversight from Gigabyte, They didn’t enable write protection for their UEFI (CVE-2017-3197), and seem to have thrown cryptography out of the window when it comes to signing their UEFI files (CVE-2017-3198). The latter vulnerability is partly due to not verifying a checksum or using HTTPS in the firmware update process, instead using its insecure sibling HTTP. CERT has issued an official vulnerability note (VU#507496) for both flaws.

Attackers may exploit the vulnerabilities to execute unsigned code in System Management Mode (SMM), planting whatever malware they like into the low level workings of the computer. Cylance explain a possible scenario as follows:

The attacker gains user-mode execution through an application vulnerability such as a browser exploit or a malicious Word document with an embedded script. From there, the attacker elevates his privileges by exploiting the kernel or a kernel module such as Capcom.sys to execute code in ring 0. A vulnerable SMI handler allows the attacker to execute code in SMM mode (ring -2) where he finally can bypass any write protection mechanisms and install a backdoor into the system’s firmware.

With all this said, it does raise some interesting opportunities for the hacker community. We wonder if anyone will come up with a custom UEFI for the Brix since Gigabyte left the keys in the door.

Canary for USB Ports

If you’re a paranoid system admin, [errbufferoverfl] has your back with software that keeps track of whenever someone plugs in or disconnects an USB-based device from a workstation.

Christened USB Canary, [errbufferoverfl’s] tool is written in Python. However, even though Python is cross-platform, USB Canary only works on Linux currently. But, fret not: [errbufferoverfl] is already working on Windows and Mac versions.

Primarily, USB Canary watches USB connectors for any activity and logs anything it sees. Moreover, when a USB device is plugged in or unplugged, USB Canary can alert the owner of the workstation via an SMS message courtesy of the Twilio API, post a message in a Slack channel or even make a noise to alert a nearby sysadmin. Additionally, USB Canary can be configured to only run when the workstation is locked (if you’re not completely paranoid).

[errbufferoverfl’s] USB Canary was born out of dissatisfaction with current workstation monitoring tools. You see, most tools only notify users after someone has logged on. [errbufferoverfl] points out that there are means to automate attacks without logging in, and we can think of many unsavory things that can be done when logged out.

While USB Canary won’t protect you from -220V , it might at least warn of a BadUSB attack. But, for the really paranoid, why not try GoodUSB?

[via bleepingcomputer]

California Looks to Compel IoT Security

There is a bill going through committee in the state of California which, if passed, would require a minium level of security for Internet of Things devices and then some. California SB 327 Information privacy: connected devices in its original form calls for connected device manufacturers to secure their devices, protect the information they collect or store, indicate when they are collecting it, get user approval before doing so, and be proactive in informing users of security updates:

require a manufacturer that sells or offers to sell a connected device, defined as any device, sensor, or other physical object that is capable of connecting to the Internet, directly or indirectly, or to another connected device, to equip the device with reasonable security features appropriate to the nature of the device and the information it may collect, contain, or transmit, that protect it from unauthorized access, destruction, use, modification, or disclosure, and to design the device to indicate when it is collecting information and to obtain consumer consent before it collects or transmits information, as specified. The bill would also require a person who sells or offers to sell a connected device to provide a short, plainly written notice of the connected device’s information collection functions at the point of sale, as specified. The bill would require a manufacturer of a connected device to provide direct notification of security patches and updates to a consumer who purchases the device.

This is just a proposal and will change as it finds its way through committee. Currently there a really no methods of punishment outlined, but recent comments have suggested individual prosecutors may have latitude to interpret these cases as they see fit. Additionally it has been suggested that the devices in question would be required to notify in some way the user when information is being collected. No language exists yet to clarify or set forth rules on this matter.

The security community has been sounding the cry of lackluster (often lack of) security on this growing army of IoT hardware and we’ve all known one day the government would get involved. Often this type of action requires a major event where people were in some way harmed either physically or financially that would push this issue. Denial of service attacks have already occurred and hijacking of webcams and such are commonplace. Perhaps what we saw in September finally pushed this into the limelight.

Any reasonable person can see the necessity of some basic level of security such as eliminating default passwords and ensuring the security of the data. The question raised here is whether or not the government can get this right. Hackaday has previously argued that this is a much deeper problem than is being addressed in this bill.

The size of California’s economy (relative to both the nation and the world) and the high concentration of tech companies make it likely that standards imposed if this law passes will have a large effect on devices in all markets.

Revealing Capcom’s Custom Silicon Security

Ask any security professional and they’ll tell you, when an attacker has hardware access it’s game over. You would think this easily applies to arcade games too — the very nature of placing the hardware in the wild means you’ve let all your secrets out. Capcom is the exception to this scenario. They developed their arcade boards to die with their secrets through a “suicide” system. All these decades later we’re beginning to get a clear look at the custom silicon that went into Capcom’s coin-op security.

Alas, this is a “part 1” article and like petulant children, we want all of our presents right now! But have patience, [Eduardo Cruz] over at ArcadeHacker is the storyteller you want to listen to on this topic. He is part of the team that figured out how to “de-suicide” the CP2 protections on old arcade games. We learned of that process last September when the guide was put out. [Eduardo] is now going through all the amazing things they learned while figuring out that process.

These machines — which had numerous titles like Super Street Fighter II and Marvel vs. Capcom — used battery-backed ram to store an encryption key. If someone tampered with the system the key would be lost and the code stored within undecipherable thanks to “two four-round Feistel ciphers with a 64-bit key”. The other scenario is that battery’s shelf life simply expires and the code is also lost. This was the real motivation behind the desuicide project.

An overview of the hardware shows that Capcom employed at least 11 types of custom silicon. As the board revisions became more eloquent, the number of chips dropped, but they continued to employ the trick of supplying each with battery power, hiding the actual location of the encryption key, and even the 68000 processor core itself. There is a 6-pin header that also suicides the boards; this has been a head-scratcher for those doing the reverse engineering. We assume it’s for an optional case-switch, a digital way to ensure you void the warranty for looking under the hood.

Thanks for walking us through this hardware [Eduardo], we can’t wait for the next installment in the series!

Cerebrum: Mobile Passwords Lifted Acoustically with NASB

 

There are innumerable password hacking methods but recent advances in acoustic and accelerometer sensing have opened up the door to side-channel attacks, where passwords or other sensitive data can be extracted from the acoustic properties of the electronics and human interface to the device. A recent and dramatic example includes the hacking of RSA encryption  simply by listening to the frequencies of sound a processor puts out when crunching the numbers.

Now there is a new long-distance hack on the scene. The Cerebrum system represents a recent innovation in side-channel password attacks leveraging acoustic signatures of mobile and other electronic devices to extract password data at stand-off distances.

Continue reading “Cerebrum: Mobile Passwords Lifted Acoustically with NASB”