A Mechanically Scanned LIDAR For Autonomous Robots

LIDAR[Patrick] has spent a lot of time around ground and aerial based autonomous robots, and over the last few years, he’s noticed a particular need for teams in robotics competitions to break through the ‘sensory bottleneck’ and get good data of the surrounding environment for navigational algorithms. The most well-funded teams in autonomous robotics competitions use LIDARs to scan the environment, but these are astonishingly expensive. With that, [Patrick] set out to create a cheaper solution.

Early this year, [Patrick] learned of an extremely cheap LIDAR sensor. Now [Patrick] is building a robotics distance measurement unit based on this sensor.

Early experiments with mechanically scanned LIDAR sensors centered around the XV-11 LIDAR, the distance sensor found in the Neato Robotics robot vacuum cleaner. [Patrick] became convinced a mechanically scanned LIDAR was the way forward when it came to distance measurement of autonomous robots. Now he’s making his own with an astonishingly inexpensive LIDAR sensor.

The basic idea of [Patrick]’s project is to take the PulsedLight LIDAR-Lite module, add a motor and processing board, and sell a complete unit that will output 360° of distance data to a robot’s main control system. The entire system should cost under $150 when finished; a boon to any students, teams, or hobbyists building an autonomous vehicle.

[Patrick]’s system is based on the PulsedLight LIDAR – a device that’s not shipping yet – but the team behind the LIDAR-Lite says they should have everything ready by the end of the month, all the better, because between these two devices, there’s a lot of cool stuff to be done in the area of autonomous robots.

Drones And Robots Come Out To Play At Sparkfun’s 6th Annual Autonomous Vehicle Competition

Sparkfun AVC 2014

Sparkfun Electronics held their 6th annual Autonomous Vehicle Competition last weekend, and this year was bigger than ever before. The action was at Boulder Reservoir in Colorado, but anyone could follow along (with a few technical difficulties) on the YouTube LiveStream. (Part 1), and (Part 2).

The story of the day was Team SHARC’s Troubled Child, which won the ground vehicle doping class. Rather than mess around with miniature cars, Team SHARC built their ‘bot out of a freaking Jeep, a 1986 Jeep Grand Wagoneer to be exact. Troubled Child had no problem getting around the course. One could say it carried the entire team. Literally – the rest of Team SHARC’s robots are riding along on top of Troubled Child in the picture up there.

There was also plenty of action in the aerial competition. Sir Crash-a-Lot was the first drone to find a watery doom at Boulder Reservoir. The last we saw of it on the stream, the team was looking for some divers.

Aircraft can not be hand launched at the AVC. Not a problem for rotary-winged vehicles, but this rule has led to some interesting solutions for fixed wing aircraft. The disguised “Team Falcon” showed up with an incredible compressed air launcher, which used a gallon water jug to fire their delta-winged plane to a clean run.  Team Karma550 wasn’t quite as lucky, with their helicopter crashing hard, and throwing up quite a bit of smoke.

We’re still waiting for more detailed results, but if you want the full scores, they are available on Sparkfun’s AVC scoreboard page.