THP Hacker Bio: Peter McCloud

By far one of the craziest entries for The Hackaday Prize is [Peter McCloud]’s Goliath, an enormous gas-powered quadcopter. It weighs about 240 pounds, is powered by a 30 horsepower v-twin lawnmower engine, is lifted into the air with homemade props milled on a CNC machine. It’s a frightening build even when the engine isn’t turning. When running, it’s an awesome display of power and technology.

Goliath has had a few setbacks of late, snapping two composite props in its first attempt at hovering. This hasn’t deterred [Peter]; he’s picking up the pieces and he’ll have this monstrous quad hovering in a week or two. A good thing, because the judges are paring the quarterfinalists just three weekends from now.

Check out [Peter]’s bio below.

Continue reading “THP Hacker Bio: Peter McCloud”

Goliath And The Rough Road To Space

No one said the road to The Hackaday Prize would be easy. Many of us have been following [Peter McCloud] as he vies for the Hackaday Prize with Goliath – A Gas Powered Quadcopter. [Peter] literally hit a snag on Monday: his own belts.

Peter had hoped to be performing tied down hover tests by Monday afternoon. Weather and a set of fouled spark plugs conspired against him though. After fighting with engine issues for the better part of a day, [Peter’s] 30 horsepower Briggs & Stratton engine finally roared to life. Then all hell broke loose.

[Peter] only let the engine run a couple of seconds before cutting the ignition. In his own words, “Things were running good until the engine was shutoff. At this point one of the belt started losing tension.”

goliath-1While the tight new engine was quickly losing RPM, the propeller and belt system still had quite a bit of inertia. As the video after the break shows, the belts started flapping and caught on the propeller blades. The front right prop tip caught the double-sided toothed belt, pulling it up and over the propeller. The other end of that same belt lives on the right rear prop. It too caught a propeller blade, snapping the composite blade clean off its hub. The bent steel pulley axles are a testament to the forces at work when things went wrong.

[Peter] isn’t giving up though. He has a plan to add belt guides and a one way bearing to the engine’s crankshaft. The one way bearing will allow the rotor system to overspeed the engine when throttle is reduced. The same bearings are commonly used on R/C helicopters to facilitate autorotation landings.

We want to see all 50 Hackaday Prize semifinalists succeed, so if you have any ideas to help with the rebuild, head over to Goliath’s Hackaday.io page and let [Peter] know!

Continue reading “Goliath And The Rough Road To Space”

Goliath: One Drone to Rule Them All

We see quadcopter projects all the time here on Hackaday, so it takes something special to get our attention. [Peter McCloud] has done just that with Goliath, a gas powered quadcopter he’s entered in The Hackaday Prize. By gas, we don’t mean a little glow fuel buzzer, We’re talking about a 30 horsepower V-twin lawnmower engine running good old-fashioned gasoline.

Multicopters powered by a single power source present a unique set of problems. Quadcopter propellers need to rotate in opposite directions to avoid the entire craft spinning due to torque action. With individual electric motors that’s as easy as swapping a couple of wires. Not so with a single rotating engine. [Peter] has accomplished this feat with a clever arrangement of single and double-sided belts.

Control is another issue. Generally, central powered multicopters use collective pitch, similar to a helicopter control system. [Peter] has decided to go with high-efficiency fixed pitch blades and a vane system for directional control. Much like hovercraft use vanes to steer, Goliath will use vanes to affect its attitude and yaw.

goliathPropThe propellers are works of art in their own right. [Peter] modeled the propellers in CAD using the principles of blade element theory, then used a Shopbot style CNC to carve them out of pink insulation foam. Styrofoam alone won’t withstand the 60 lbs each propeller will be supporting, so [Peter] plans to laminate the props in composite cloth. This is the similar to the way many full-scale helicopter rotor blades are assembled.

Goliath’s frame is constructed of Dexion style slotted steel angles, and we have to admit, at 240 lbs with engine, it seems like it’s going to be a heavy beast. Big enough to ride at least. Who knows… if the judges like it [Peter] may ride Goliath all the way to space!

 

 


SpaceWrencherThe project featured in this post is an entry in The Hackaday Prize. Build something awesome and win a trip to space or hundreds of other prizes.