The How And Why Of Tungsten Carbide Inserts, And A Factory Tour

It seems a touch ironic that one of the main consumables in the machining industry is made out of one of the hardest, toughest substances there is. But such is the case for tungsten carbide inserts, the flecks of material that form the business end of most of the tools used to shape metal. And thanks to one of the biggest suppliers of inserts, Sweden’s Sandvik Coromant, we get this fascinating peek at how they’re manufactured.

For anyone into machining, the video below is a must see. For those not in the know, tungsten carbide inserts are the replaceable bits that form the cutting edges of almost every tool used to shape metal. The video shows how powdered tungsten carbide is mixed with other materials and pressed into complex shapes by a metal injection molding process, similar to the one used to make gears that we described recently. The inserts are then sintered in a furnace to bind the metal particles together into a cohesive, strong part. After exhaustive quality inspections, the inserts are ground to their final shape before being shipped. It’s fascinating stuff.

Coincidentally, [John] at NYC CNC just released his own video from his recent jealousy-inducing tour of the Sandvik factory. That video is also well worth watching, especially if you even have a passing interest in automation. The degree to which the plant is automated is staggering – from autonomous forklifts to massive CNC work cells that require no operators, this looks like the very picture of the factory of the future. It rolls some of the Sandvik video in, but the behind-the-scenes stuff is great.

Continue reading “The How And Why Of Tungsten Carbide Inserts, And A Factory Tour”

Getting Mixed Up With Home Stir Welding

Most processes designed to join two pieces of what-have-you together are consumptive of something, whether it’s some material acting as a third party to work piece and the tool, or the tool itself. In the wonderful world of friction stir welding, the material of the two pieces under union gets swirled together through friction as the tool traverses the join path. There are, of course, professional machines that perform this with relative ease, but with a large amount of beer on the line, [skookum_choocher] was determined to make his own.

In the first video, he machines a friction welding tool by shaping a tungsten carbide button from a drill bit using a diamond grinder. Once he has a rough shoulder and protuberance going, it’s time to let her rip.  Despite issues with clamping and the geometry of his tool, the weld is ultimately successful at the tail end.

Undeterred, he has another go at it after making some adjustments to the tool shoulder, changing the belt on his poor old Bridgeport, and increasing the clamping strength by a factor of four. You clamp sixteen tons, and whaddya get? A slightly better butt weld than the first time, it turns out. Fearing this weld is insufficient to win the bet, he goes for the lap weld with the work pieces stacked together in a sandwich. We prefer pizza with beer, but nevertheless congratulate him.

Continue reading “Getting Mixed Up With Home Stir Welding”