The Pontoon Bridge Being Floated As An NYC Transit Fix

New York City’s L train carries about 400,000 passengers a day, linking Manhattan and Brooklyn and bringing passengers along 14th Street, under the East River, and through the neighborhoods of Williamsburg, Bushwick, Ridgewood, Brownsville, and Canarsie. About 225,000 of these passengers pass through the Canarsie Tunnel, a two-tube cast iron rail tunnel built below the East River between Manhattan and Brooklyn in 1924. Like many other New York City road and subway tunnels, the Canarsie Tunnel was badly damaged when Hurricane Sandy’s storm surge inundated the tubes with million of gallons of salt water. Six years later, the impending closure of the tunnel is motivating New Yorkers to develop their own ambitious infrastructure ideas.

Continue reading “The Pontoon Bridge Being Floated As An NYC Transit Fix”

Regrowing A Blackberry From The Keyboard Out

Here at Hackaday we’re big fans of device-reuse, and what [arturo182] has done with the Blackberry Q10’s keyboard is a fantastic example. Sometimes you’re working on a portable device and think to yourself “what this could really use is a QWERTY keyboard”. What project doesn’t need a keyboard?

Typically this descends into a cost benefit analysis of the horrors of soldering 60ish SMD tact switches to a board, which is no fun. With more resources you can use Snaptron snap domes like the [NextThingCo’s] PocketCHIP, but those are complex to source for a one off project and the key feel can be hard to really perfect. Instead of choosing one of those routes, [arturo182] reverse engineered the keyboard from a Blackberry Q10.

When you think of good, small keyboards, there has always been one standout: Blackberry. For decades Blackberry has been known for absolutely nailing the sweet tactile feel of a tiny key under your thumb. The Q10 is one example, originally becoming avalible in 2013 as one of the launch devices for their then-new Blackberry OS 10. Like most of Blackberry’s business the OS and the phone are long out of date, but that doesn’t mean the keyboard has aged.

[Arturo182] says he can find them from the usual Chinese sources for around $3 each, which is too cheap to not explore. Building on the work of [WooDWorkeR] (on Hackaday.io) and [JoeN] to reverse engineer the matrix and to find the correct connector, he integrated the keyboard into an easy to use breakout board that exposes the key matrix, per-row backlight controls, and even the MEMS mic! More excitingly, he has built a small portable device with all the trappings of the original Q10; a color LCD, joystick, function buttons, and more in a very small footprint.

KiCAD sources, including 3D models, for the keyboard and for the breakout board are available.

Now if only someone can find a way to salvage the unusual square, high-DPI displays from the Q10, we’d be in portable device nirvana.

Continue reading “Regrowing A Blackberry From The Keyboard Out”

Adding Optics To A Consumer Thermal Camera

[David Prutchi] writes in to tell us about his recent experiments with building lenses for thermal imaging cameras, which to his knowledge is a first (at least as far as DIY hardware is concerned). With his custom designed and built optics, he’s demonstrated the ability to not only zoom in on distant targets, but get up close and personal with small objects. He’s working with the Seek RevealPro, but the concept should work on hardware from other manufacturers as well.

In his detailed whitepaper, [David] starts by describing the types of lenses that are appropriate for thermal imaging. Glass doesn’t transmit the wavelengths that thermal camera is looking for, so the lenses need to be made of either germanium or zinc selenide. These aren’t exactly the kind of thing you can pick up at the local camera shop, and even small lenses made of these materials can cost hundreds of dollars. He suggests keeping an eye out on eBay for surplus optics you could pull them out of to keep costs down.

Creating the macro adapter is easy enough, you simply put a convex lens in front of the thermal camera. But telephoto is a bit more involved, and the rest of the whitepaper details the math and construction techniques used to assemble it the optics. [David] gives a complete bill of materials and cost breakdown for his telephoto converter, but prepare for a bout of sticker shock: the total cost with all new hardware is nearly $500 USD. The majority of that is for the special lenses though, so if you can score some on the second-hand market it can drop the cost significantly.

We’ve seen an impressive array of thermal camera hacks and projects recently, no doubt due to the falling prices of consumer-level imaging hardware. Given their utility as a diagnostic tool, a thermal camera might be something worth adding to your bag of tricks.