So What Is A Supercomputer Anyway?

Over the decades there have been many denominations coined to classify computer systems, usually when they got used in different fields or technological improvements caused significant shifts. While the very first electronic computers were very limited and often not programmable, they would soon morph into something that we’d recognize today as a computer, starting with World War 2’s Colossus and ENIAC, which saw use with cryptanalysis and military weapons programs, respectively.

The first commercial digital electronic computer wouldn’t appear until 1951, however, in the form of the Ferranti Mark 1. These 4.5 ton systems mostly found their way to universities and kin, where they’d find welcome use in engineering, architecture and scientific calculations. This became the focus of new computer systems, effectively the equivalent of a scientific calculator. Until the invention of the transistor, the idea of a computer being anything but a hulking, room-sized monstrosity was preposterous.

A few decades later, more computer power could be crammed into less space than ever before including ever higher density storage. Computers were even found in toys, and amidst a whirlwind of mini-, micro-, super-, home-, minisuper- and mainframe computer systems, one could be excused for asking the question: what even is a supercomputer?

Continue reading “So What Is A Supercomputer Anyway?”

Make Fancy Resin Printer 3D Models FDM-Friendly

Do you like high-detail 3D models intended for resin printing, but wish you could more easily print them on a filament-based FDM printer? Good news, because [Jacob] of Painted4Combat shared a tool he created to make 3D models meant for resin printers — the kind popular with tabletop gamers — easier to port to FDM. It comes in the form of a Blender add-on called Resin2FDM. Intrigued, but wary of your own lack of experience with Blender? No problem, because he also made a video that walks you through the whole thing step-by-step.

Resin2FDM separates the model from the support structure, then converts the support structure to be FDM-friendly.

3D models intended for resin printing aren’t actually any different, format-wise, from models intended for FDM printers. The differences all come down to the features of the model and how well the printer can execute them. Resin printing is very different from FDM, so printing a model on the “wrong” type of printer will often have disappointing results. Let’s look at why that is, to better understand what makes [Jacob]’s tool so useful.

Rafts and a forest of thin tree-like supports are common in resin printing. In the tabletop gaming scene, many models come pre-supported for convenience. A fair bit of work goes into optimizing the orientation of everything for best printed results, but the benefits don’t carry directly over to FDM.

For one thing, supports for resin prints are usually too small for an FDM printer to properly execute — they tend to be very thin and very tall, which is probably the least favorable shape for FDM printing. In addition, contact points where each support tapers down to a small point that connects to the model are especially troublesome; FDM slicer software will often simply consider those features too small to bother trying to print. Supports that work on a resin printer tend to be too small or too weak to be effective on FDM, even with a 0.2 mm nozzle.

To solve this, [Jacob]’s tool allows one to separate the model itself from the support structure. Once that is done, the tool further allows one to tweak the nest of supports, thickening them up just enough to successfully print on an FDM printer, while leaving the main model unchanged. The result is a support structure that prints well via FDM, allowing the model itself to come out nicely, with a minimum of alterations to the original.

Resin2FDM is available in two versions, the Lite version is free and an advanced version with more features is available to [Jacob]’s Patreon subscribers. The video (embedded below) covers everything from installation to use, and includes some general tips for best results. Check it out if you’re interested in how [Jacob] solved this problem, and keep it in mind for the next time you run across a pre-supported model intended for resin printing that you wish you could print with FDM.

Continue reading “Make Fancy Resin Printer 3D Models FDM-Friendly”

“Glasses” That Transcribe Text To Audio

Glasses for the blind might sound like an odd idea, given the traditional purpose of glasses and the issue of vision impairment. However, eighth-grade student [Akhil Nagori] built these glasses with an alternate purpose in mind. They’re not really for seeing. Instead, they’re outfitted with hardware to capture text and read it aloud.

Yes, we’re talking about real-time text-to-audio transcription, built into a head-worn format. The hardware is pretty straightforward: a Raspberry Pi Zero 2W runs off a battery and is outfitted with the usual first-party camera. The camera is mounted on a set of eyeglass frames so that it points at whatever the wearer might be “looking” at. At the push of a button, the camera captures an image, and then passes it to an API which does the optical character recognition. The text can then be passed to a speech synthesizer so it can be read aloud to the wearer.

It’s funny to think about how advanced this project really is. Jump back to the dawn of the microcomputer era, and such a device would have been a total flight of fancy—something a researcher might make a PhD and career out of. Indeed, OCR and speech synthesis alone were challenge enough. Today, you can stand on the shoulders of giants and include such mighty capability in a homebrewed device that cost less than $50 to assemble. It’s a neat project, too, and one that we’re sure taught [Akhil] many valuable skills along the way.

Continue reading ““Glasses” That Transcribe Text To Audio”