Ask Hackaday: Are You Wearing 3D Printed Shoes?

We love 3D printing. We’ll print brackets, brackets for brackets, and brackets to hold other brackets in place. Perhaps even a guilty-pleasure Benchy. But 3D printed shoes? That’s where we start to have questions.

Every few months, someone announces a new line of 3D-printed footwear. Do you really want your next pair of sneakers to come out of a nozzle? Most of the shoes are either limited editions or fail to become very popular.

First World Problem

You might be thinking, “Really? Is this a problem that 3D printing is uniquely situated to solve?” You might assume that this is just some funny designs on some of the 3D model download sites. But no. Adidas, Nike, and Puma have shoes that are at least partially 3D printed. We have to ask why.

We are pretty happy with our shoes just the way that they are. But we will admit, if you insist on getting a perfect fitting shoe, maybe having a scan of your foot and a custom or semi-custom shoe printed is a good idea. Zellerfield lets you scan your feet with your phone, for example. [Stefan] at CNC Kitchen had a look at those in a recent video. The company is also in many partnerships, so when you hear that Hugo Boss, Mallet London, and Sean Watherspoon have a 3D-printed shoe, it might actually be their design from Zellerfield.

Continue reading “Ask Hackaday: Are You Wearing 3D Printed Shoes?”

Screenshot of "Frame of Preference"

An Emulated Stroll Down Macintosh Memory Lane

If you’re into Macs, you’ll always remember your first. Maybe it was the revolutionary classic of 1984 fame, perhaps it was the adorable G3 iMac in 1998, or even a shiny OS X machine in the 21st century. Whichever it is, you’ll find it emulated in [Marcin Wichary]’s essay “Frame of preference: A history of Mac settings, 1984–2004” — an exploration of the control panel and its history.

Image of PowerBook showing the MacOS 8.0 desktop.
That’s not a photograph, it’s an emulator. (At least on the page. Here, it’s a screenshot.)

[Marcin] is a UI designer as well as an engineer and tech historian, and his UI chops come out in full force, commenting and critiquing Curputino’s coercions. The writing is excellent, as you’d expect from the man who wrote the book on keyboards, and it provides a fascinating look at the world of retrocomputing through the eyes of a designer. That design-focused outlook is very apropos for Apple in particular. (And NeXT, of course, because you can’t tell the story of Apple without it.)

There are ten emulators on the page, provided by [Mihai Parparita] of Infinite Mac. It’s like a virtual museum with a particularly knowledgeable tour guide — and it’s a blast, getting to feel hands-on, the design changes being discussed. There’s a certain amount of gamification, with each system having suggested tasks and a completion score when you finish reading. There are even Easter eggs.

This is everything we wish the modern web was like: the passionate deep-dives of personal sites on the Old Web, but enhanced and enabled by modern technology. If you’re missing those vintage Mac days and don’t want to explore them in browser, you can 3D print your own full-size replica, or a doll-sized picoMac.

Generatively-Designed Aerospike Test Fired

The aerospike engine holds great promise for spaceflight, but for various reasons, has remained slightly out of reach for decades. But thanks to Leap 71, the technology has moved one step closer to a spacecraft near you with the test fire of their generatively-designed, 3D printed aerospike.

We reported on the original design process of the engine, but at the time it hadn’t been given a chance to burn its liquid oxygen and kerosene fuel. The special sauce was the application of a computational physics model to tackle the complex issue of keeping the engine components cool enough to function while directing 3,500˚C exhaust around the eponymous spike.

Printed via a powder bed process out of CuCrZr, cleaned, heat treated, and then prepped by the University of Sheffield’s Race 2 Space Team, the rocket produced 5,000 Newtons (1,100 lbf) of thrust during its test fire. For comparison, VentureStar, the ill-fated aerospike single stage to orbit project from the 1990s, was projected to produce more than 1,917 kilonewtons (431,000 lbf) from each of its seven RS-2200 engines. Leap 71 obviously has some scaling up to do before this can propel any crewed spacecraft.

If you want to build your own aerospike or 3D printed rocket nozzles we encourage you to read, understand, and follow all relevant safety guidelines when handling your rockets. It is rocket science, after all!