History Of White LEDs

Compared to incandescent lightbulbs, LEDs produce a lot more lumens per watt of input power — they’re more efficient at producing light.  Of course, that means that incandescent light bulbs are more efficient at producing heat, and as the days get shorter, and the nights get colder, somewhere, someone who took the leap to LED lighting has a furnace that’s working overtime. And that someone might also wonder how we got here: a world lit by esoteric inorganic semiconductors illuminating phosphors.

The fact that diodes emit light under certain conditions has been known for over 100 years; the first light-emitting diode was discovered at Marconi Labs in 1907 in a cat’s whisker detector, the first kind of diode. This discovery was simply a scientific curiosity until another discovery at Texas Instruments revealed infrared light emissions from a tunnel diode constructed from a gallium arsenide substrate. This infrared LED was then patented by TI, and a project began to manufacture these infrared light emitting diodes.

Continue reading “History Of White LEDs”

Hackaday Links Column Banner

Hackaday Links: October 28, 2018

Steve Jobs was actually a good designer and CEO. This is a statement that would have been met with derision in 2010, with stories of a ‘reality distortion field’. We’re coming up on a decade in the post-Jobs era, and if there’s one thing the last seven or eight years can tell us, it’s that Jobs really, really knew how to make stuff people wanted. Apart from the iPhone, OS X, and the late 90s redesign of their desktops, the most impressive thing Jobs ever did was NeXT. Now there’s book that describes the minutia of all NeXT hardware. Thanks to the Adafruit blog for pointing this one out.

Speaking of Apple, here’s something else that’s probably not worth your time. It’s a highly exclusive leak of upcoming Apple hardware that’s sure to change everything you know about tech. Really, it’s a floating hockey puck branded with the Apple logo. No idea what this is, but somebody is getting some sweet, sweet YouTube ad revenue from this.

A few years ago, [Tom Stanton] built an electric VTOL plane. It looked pretty much like any other foam board airplane you’d find, except there were motors on the wingtips a lá an Osprey. Now, he’s massively improving this VTOL plane. The new build features a 3D printed fuselage and 3D printed wing ribs to give this plane a proper airfoil. Despite being mostly 3D printed, this VTOL plane weighs less than half of the first version. Also, a reminder: VTOL planes (or really anything that generates lift from going forward) are the future of small unmanned aerial craft. Better get hip to this now.

Next weekend is the Hackaday Superconference, and you know we’re going to have an awesome hardware badge. It’s a badge, that’s a computer, and has a keyboard. What more could you want? How about an expansion header? Yeah, we’ve got a way to add a shift register and 8 LEDs to the badge. From there, you can do just about everything. Who’s going to bring an old parallel port printer?

The Ultimate MIDI Wind Controller Is The Human Voice

When it comes to music, the human voice is the most incredible instrument. From Tuvan throat singing to sopranos belting out an aria, the human vocal tract has evolved over millions of years to be the greatest musical instrument. We haven’t quite gotten to the point where we can implant autotune in our vocal cords, but this project for the Hackaday Prize aims to be a bridge between singers and instrumentalists. It’s a hands-free instrument that relies on vocal gesture sensing to drive electronic musical instruments.

The act of speaking requires dozens of muscles, and of course no device that measures how the human vocal tract is shaped will be able to measure all of them, but the Multiwind does manage to measure breathing in, breathing out, the shape of the lower lip, the upper lip, and its own tilt, giving it far more feedback than any traditional wind instrument. It does this with IMUs and a mouthpiece mounted on a mount that is seemingly inspired by one of those hands-free harmonica neck mounts.

The output for this device is MIDI, although the team behind this build already has data streaming to an instance of Max, and once you have that, you have every musical instrument imaginable. It’s an innovative musical instrument, and something we’re really excited to see the results of.

Chiptunes In An Altoids Tin

For [Dejan]’s entry to the Musical Instrument Challenge in this year’s Hackaday Prize, he’s tapping into some of the great work that has been done over the years to bring bleeps and bloops to the masses. He’s building a drum machine, a bass synth, and an arpeggiator that fits in your pocket, in a handy form factor that fits in an Altoids tin. It’s the FATCAT Altoids Tin Mod Tracker.

This is a simple build meant to fit in an Altoids tin, so you’re not getting a whole lot of hardware here. There’s a battery, there’s a boost circuit, and there’s a single chip, an ATtiny84. This tiny little microcontroller is the heart of the box, able to provide a drum track with a kick, snare, and a closed and open high hat. There’s a bass with a simple square wave and portamento, and an arp track that can be used as a lead or arpeggiated chords. All of this is programmed in C and uploaded straight to the chip.

The ATtiny series of microcontrollers are fairly popular for various means and methods of creating square wave bleeps and bloops. We’ve seen them become a MIDI synth that fits inside a MIDI jack, and we’ve seen how much chiptune goodness you can fit in thirty two bytes of RAM. Cornell even had a spat of rickroll vandalism with a coin cell throwie built on an ATtiny85. Anything that puts more ATtiny chiptunes into the hands of more people is great in our books, and this Altoids tin synth is just the thing.

You can check out a demo of the FATCAT below.

Continue reading “Chiptunes In An Altoids Tin”

This RC Fortnite Rocket Is A Victory Royale

Minecraft is over and Red Dead Redemption II has barely even started yet. The biggest thing on the planet right now is Fortnite, and oh man, is it awesome. It’s the best game ever, and we wish every day was a Battle Royale. But what if Fortnite was real life? That’s exactly what [Giaco] and [David] did when they made an RC Fortnite Foam Rocket. It’s Fortnite, in the real world! If you don’t mind, we’re going to go T-pose in the corner.

The core of this build was done with the Maker Knife, first introduced as a Kickstarter by [Giaco] as an everyday carry utility knife that features ceramic blades. It’s impressive for a box cutter, but what’s even more impressive is that this fantastic tool can be used to make a real-life Fortnite rocket.

This rocket, like so many other RC planes we see these days, was constructed out of foam board, a technique that was popularized by the folks at Flite Test, and uses all the construction techniques you would usually see in a foam board model airplane. The hinges for the control surfaces are chamfered and reinforced with packing tape, servos are just hot glued to the body, and the control horns are just bits of cardboard.

What makes this really impressive is that this Fortnite rocket actually flies. [Giaco] took this plane out with [David] of rcexplorer fame, and even though this ‘plane’ didn’t really have any lifting surfaces, despite indiscernible center of gravity, and the fact that the paint weighed more than the plane itself, this thing can fly. Fairly well, too, until it gets stuck in a tree. There are prices to pay for producing content that’s this attractive to 12-year-olds, I guess.

Continue reading “This RC Fortnite Rocket Is A Victory Royale”

Hardware Controllers For Software Effects

There is an interesting multi-effect available for all you musicians out there. It’s the Turnado from Sugar Bytes. It’s a real-time effects unit that takes advantage of a computer’s horsepower to add reverb and ring mods to whatever audio you feed into it. There’s flanger and a phaser. If you feed a drum loop into your computer, there’s a stutter function which means you too can become a Soundcloud rapper.

Unfortunately, this multi-effect runs on a computer. That means you have to deal with the user interface of a desktop or laptop — GUIs, a mouse, and keyboard. Maybe a touch screen if you’re lucky.

We just wrapped up the Musical Instrument challenge in the Hackaday Prize, and if there’s one thing musicians like it’s a physical interface for all their weird gadgets. That’s what makes the Turnado Hardware MIDI Controller from [Liam Lacey]. It’s a hardware interface for a computer-based software tool.

On board are nine independent joysticks, more than that many encoders, a few buttons, and a display to have everything make sense. All of this is controlled by a Teensy, and it is mostly a plug-and-play solution for controlling Turnado. It’s a great project that makes a great software tool even more useful, and we’re glad to see it make the final cut for the Musical Instrument Challenge in this year’s Hackaday Prize.

Gutters To Gardens: The IoT Rain Barrel

There’s nothing quite like having a garden in your backyard. You get tomatoes with flavor. Fresh herbs are easy. If you’d like to go crazy, you can always grow a gigantic pumpkin. But there’s a problem with gardening: the work. You’ve got to water, and you’ve got to weed. You’ve also got to deal with the thousand ladybugs you bought for a laugh.

For his Hackaday Prize entry, [Kent] has solved at least one of these problems. It’s an Internet of Things rain barrel. It’s designed to be as simple as possible so that anyone can set it up in just a few hours, and there’s also an option to make this rain barrel solar powered, making it eminently sustainable.

The design of this rain barrel begins as you would expect, with a 55-gallon rain barrel collecting water from [Kent]’s gutters. At the bottom of this barrel is a bunghole, and from that, a 12-volt pump sucks up the water and dispenses it into the garden bed. Everything is controlled through a Particle Photon, one of the easiest ways to set up an Internet of Things project, and yes, you can control this entire setup with an Alexa. The future is now.

Below, you can check out a few of the demo videos [Kent] put together for his project. One of them is solenoids clicking off to Deep Purple’s Smoke on the Water because if you’re going to build an Internet of Things thing with clicky electromechanical valves, you might as well make it play music.

Continue reading “Gutters To Gardens: The IoT Rain Barrel”