Modular Robotics That Can Make Themselves Into Anything

The greatest challenge of robotics is autonomy. Usually, this means cars that can drive themselves, a robotic vacuum that won’t drive down the stairs, or a rover on Mars that can drive on Mars. This project is nothing like that. Instead of building a robot with a single shape, this robot is made out of several modules that can self-assemble into different structures. It’s an organized fleet of robots, all helping each other, like an ant colony, or our future as Gray Goo.

If the idea of self-assembling modular robots sounds familiar, you’re right. The Dtto won the Grand Prize in the 2016 Hackaday Prize, and it’s a beast of a project. It’s an ouroboros of a robot that can assemble itself into a snake, a wheel, or an arm. It’s weird, but if you want a robot that can do anything, this is the kind of modularity that you need. One step closer to Gray Goo, at least.

Like Dtto, the noMad can transform itself into bridges, arms, snakes, and wheels by assembling each individual piece into one component of a massive structure. It’s something we rarely see, and it’s a difficult computational and engineering problem. Still, the progress the team behind noMad has been making is remarkable, and we can’t wait to see the finished project.

Digitizing Domesday Disks

After the Norman invasion of England, William the Conqueror ordered a great reckoning of all the lands and assets owned. Tax assessors went out into the country, counted sheep and chickens, and compiled everything into one great tome. This was the Domesday Book, an accounting of everything owned in England nearly 1000 years ago. It is a vital source for historians and economists, and one of the most important texts of the Middle Ages.

In the early 1980s, the BBC set upon a new Domesday Project. Over one million people took part in compiling writings on history, geography, and social issues. Maps were cataloged, and census data recorded. All of this was printed on a LaserDisk, meant to be played on an Acorn BBC Master. Now, 30 years on, hardly anyone can read the BBC Domesday Project. Let that be a lesson, kids: follow [Jason Scott] on Twitter.

Even though Acorn computers and SCSI LaserDisks and coprocessors are dying, that doesn’t mean the modern Domesday Disk is lost to the sands of time. This project aims to duplicate the Domesday Disk, and in the process provide a means to archive all LaserDisks. It’s a capture card for LaserDisks, and it also means we can finally make a good rip of the un-specalized Star Wars.

The Domesday Duplicator is a shield that plugs into an Altera DE-0 Nano FPGA board and a Cypress FX3 USB board. The Duplicator itself serves as an analog capture card complete with an RF amplifier and a 40 MSPS ADC — fast enough for any analog video signal. With the 50 Ohm input, it will work with most LaserDisk players, ultimately preserving this incredible historical archive from the early 80s.

Is It A Golden Gun If It’s Made Out Of Brass?

On today’s episode of ‘this is a really neat video that will soon be demonetized by YouTube’ comes this fantastic build from [John]. It is the Golden Gun, or at least it looks like a Golden Gun because it’s made out of melted down brass casings. It’s a masterclass demonstration of melting stuff down and turning a thirteen-pound blob of metal into a two-pound precision machined instrument.

This build began by simply cutting a wooden block, packing it in sand, and melting approximately 1425 shell casings of various calibers in a DIY furnace. The molten brass was then simply poured into the open mold. This is standard yellow brass, with about 70% copper and 30% zinc. There’s a bit of aluminum in there from the primers, and the resulting block isn’t terribly great for machining. [John] says this could be fixed by adding a few percent of lead to the melt. To all the jokesters suggesting he add some unfired bullets to the melt, don’t worry, we already have that covered.

chiseling a hole square, with a chisel.

The machining went as you would expect it would with a large mill, but there are a few things that made this entire video worthwhile. For some of the holes, [John] had to square up the corners. The simplest and easiest way to do this is to break out a file. This is brass, though, and with some steel chisels hanging around the shop your mortise and tenon skills might come in handy. With the very careful application of force, [John] managed to put corners on a circle with a standard wood chisel. A bit later in the build video, a few more sharp corners were created by shoving a broach in the mill and jamming it down into the work.

When it comes to machining builds, this is high art. Yes, it’s the same as building an AR-15 out of a few hundred soda cans, but this one is made out of brass. It looks just great, and that final polish turns the entire project into something that looks like it’s out of a video game. Simply amazing.

If you’re looking for more ways to push your metalwork boundaries, give cast iron a try!

Continue reading “Is It A Golden Gun If It’s Made Out Of Brass?”

This Is The Year Conference Badges Get Their Own Badges

Over the last few years, the art and artistry of printed circuit boards has moved from business cards to the most desirable of all disposable electronics. I speak, of course, of badgelife. This is the community built on creating and distributing independent electronic conference badges at the various tech and security conferences around the globe.

Until now, badgelife has been a loose confederation of badgemakers and distributors outdoing themselves each year with ever more impressive boards, techniques, and always more blinky bling. The field is advancing so fast there is no comparison to what was being done in years past; where a simple PCB and blinking LED would have sufficed a decade ago, now we have customized microcontrollers direct from the factory, fancy new chips, and the greatest art you’ve ever seen.

Now we have reached a threshold. The badgelife community has gotten so big, the badges are getting their own badges. This is the year of the badge add-on. We’re all building tiny trinkets for our badges, and this time, they’ll all work together. We’re exactly one year away from a sweet Voltron robot made of badges.

Continue reading “This Is The Year Conference Badges Get Their Own Badges”

This Weekend: The East Coast RepRap Festival

Are you around Philly, Baltimore, or DC, and looking for something fun to do this weekend? Great news, because Saturday sees the start of the first inaugural East Coast RepRap Festival in Bel Air, Maryland. Eh, we’ll grab some Bohs and boil up some crabs. It’ll be a great time.

Regular readers of Hackaday should have heard of MRRF, the Midwest RepRap Festival, and the greatest 3D printer convention on the planet. There’s a reason it’s so good: it’s not a trade show. It’s simply everyone in the business and a ton of cool people heading out to the middle of Indiana one weekend per year and simply dorking out. All the heavy hitters were at MRRF last year, from [Prusa], to E3D, to [Brook] of Printrbot. The 3D Printing YouTubers made it out, and the entire event was simply a thousand or so people who were the best at what they do just hanging out.

Want evidence a highly unorganized conference of 3D printing enthusiasts can be great? Here’s a working MakerBot Cupcake. Here’s full-color printing with cyan, magenta, yellow, black, and white filament. How about an infinite build volume printer? There are roundtables, demos, and talks. This is the state of 3D printing, and it inexplicably happens in the middle of nowhere every year.

This weekend, the East Coast RepRap Festival is launching. This is not an event organized by SeeMeCNC, the hosts of the Midwest RepRap Festival. This is an independent event, and we have no idea how it’s going to turn out. That said, the schedule of events looks great with 3D printed pinewood (douglasfirfill?) derbies, and of course, the event space will be filled with strange and exotic homebuilt printers. The big names will be there, and it looks like this may be the beginning of something great.

Hackaday is going to have some boots on the ground this weekend, and we’re going to be showing off the greatest and the best from ERRF. Tickets are still available, and it looks like this is shaping up to be a great weekend.

Friday Hack Chat: Ladyada On Creative And Interactive Robotics

Somewhere at the intersection of microcontrollers, open source toolchains, the Maker Movement, and the march of technology, there’s a fuzzy concept that can best be described as robotics or physical computing. Instead of a computer in a box or a dumb microcontroller, these projects interact with the outside world. Whether that’s through the Internet, tapping a bunch of sensors, or just waving the arm of a servo around, there’s a need for a platform that actually does all of this stuff. For this week’s Hack Chat, we’re going to be talking all about creative and interactive robots, and you’re invited.

Our guest for this week’s Hack Chat will be Limor “Ladyada” Fried, the founder of Adafruit, and someone who needs no introduction but we’re going to do it anyway. Adafruit began as a weird side project selling exact reproductions of the Roland TB-303, building cell phone jammers, and making guides to build your own USB power bank before USB power banks were a thing. This has grown into Adafruit, a company with over 100 employees in the heart of New York City, one of the best places for learning and making electronics, and a place that does everything Open Source with zero loans or VC money. By any objective measure, Adafruit has become the most successful business story to come out of the Maker Movement, however nebulously that can be defined.

This week the Hack Chat will be focused on the CRICKIT, the Creative Robotics and Interactive Construction Kit. The CRICKIT is an add-on to Adafruit’s Circuit Playground that allows you to build your own robot with CircuitPython, MakeCode, or just Arduino. There’s support for arts, crafts, sensors, audio, animatronics, physical computing, kinetic sculptures, science experiments, and just about anything else you can think of. Need an example? Here’s Blue Öyster Cult. Here’s that robot that came with the NES. It’s all great fun.

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the Hack Chat Event Page and we’ll put that in the queue for the Hack Chat discussion.join-hack-chat

Our Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week is just like any other, and we’ll be gathering ’round our video terminals at noon, Pacific, on Friday, June 22nd.  Here’s a clock counting down the time until the Hack Chat starts.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Would You Look At That Yaw Control

[Jeff Bezos] might be getting all the credit for developing a rocket that can take off and land vertically, but [Joe Barnard] is doing it the hard way. He’s doing it with Estes motors you can pick up in any hobby shop. He’s doing it with a model of a Falcon 9, and he’s on his way to launching and landing a rocket using nothing but solid propellant.

The key to these launches is, of course, the flight controller, This is the Signal flight controller, and it has everything you would expect from a small board meant to mount in the frame of a model rocket. There’s a barometer, an IMU, a buzzer (important!), Bluetooth connectivity, and a microSD card slot for data logging. What makes this flight computer different is the addition of two connectors for standard hobby servos. With the addition of a 3D printed adapter, this flight controller adds thrust vectoring control. That means a rocket will go straight up without the use of fins.

We’ve seen [Joe]’s work before, and things have improved significantly in the last year and a half. The latest update from last weekend was a scale model (1/48) of the Falcon Heavy. In a 45-second video, [Joe]’s model of the Falcon Heavy launches on the two booster rockets, lights the center core, drops the two boosters and continues on until the parachutes unfurl. This would be impressive without active guidance of the motor, and [Joe] is adding servos and launch computers to the mix. It’s awesome, and certainly unable to be exported from the US.