Festo BionicFinWave underwater robot

[Festo]’s Underwater Robot Uses Body-Length Fins

[Festo] have come up with yet another amazing robot, a swimming one this time with an elegant propulsion mechanism. They call it the BionicFinWave. Two fins on either side almost a body-length long create a wave which pushes water backward, making the robot move forward. It’s modeled after such fish as the cuttlefish and the Nile perch.

The BionicFinWave's fin mechanismWhat was their elegant solution for making the fins undulate? Nine lever arms are attached to each fin. Those lever arms are controlled by two crankshafts which extend from the front of the body to the rear, one for each side. A servo motor then turns each crankshaft. Since the crankshafts are independent, that means each fin operates independently. This allows for turning by having one fin move faster than the other. A third motor in the head flexes the body, causing the robot to swim up or down.

There’s also a pressure sensor and an ultrasonic sensor in the head for depth control and avoiding objects and walls. While these allow it to swim autonomously in its acrylic, tubular track, there is wireless communication for recording sensor data. Watch it in the video below as it effortlessly swims around its track.

[Festo] has created a lot of these marvels over the years. We’ve previously covered their bionic hopping kangaroo (we kid you not), their robot ants with circuitry printed on their exoskeleton, and perhaps the most realistic flapping robotic bird ever made.

Continue reading “[Festo]’s Underwater Robot Uses Body-Length Fins”

Computers Go Hollywood

Have you ever been watching a TV show or a movie and spotted a familiar computer? [James Carter] did and he created a website to help you identify which old computers appear in TV shows and movies. We came across this when researching another post about an old computer and wondered if it was any old movies. It wasn’t.

You can search by computer or by title. There are also ratings about how visible, realistic, and important the computer is for each item. The database only contains fictional works, not commercials or documentaries. The oldest entry we could find was 1950’s Destination Moon which starred a GE Differential Analyzer. Well, also John Archer, we suppose. We assume GE had a good agent as the same computer showed up in Earth vs. the Flying Saucers (1956) and When Worlds Collide (1951). You can see a clip of the computer’s appearance in Earth vs. the Flying Saucers, below.

Continue reading “Computers Go Hollywood”

Is It A Golden Gun If It’s Made Out Of Brass?

On today’s episode of ‘this is a really neat video that will soon be demonetized by YouTube’ comes this fantastic build from [John]. It is the Golden Gun, or at least it looks like a Golden Gun because it’s made out of melted down brass casings. It’s a masterclass demonstration of melting stuff down and turning a thirteen-pound blob of metal into a two-pound precision machined instrument.

This build began by simply cutting a wooden block, packing it in sand, and melting approximately 1425 shell casings of various calibers in a DIY furnace. The molten brass was then simply poured into the open mold. This is standard yellow brass, with about 70% copper and 30% zinc. There’s a bit of aluminum in there from the primers, and the resulting block isn’t terribly great for machining. [John] says this could be fixed by adding a few percent of lead to the melt. To all the jokesters suggesting he add some unfired bullets to the melt, don’t worry, we already have that covered.

chiseling a hole square, with a chisel.

The machining went as you would expect it would with a large mill, but there are a few things that made this entire video worthwhile. For some of the holes, [John] had to square up the corners. The simplest and easiest way to do this is to break out a file. This is brass, though, and with some steel chisels hanging around the shop your mortise and tenon skills might come in handy. With the very careful application of force, [John] managed to put corners on a circle with a standard wood chisel. A bit later in the build video, a few more sharp corners were created by shoving a broach in the mill and jamming it down into the work.

When it comes to machining builds, this is high art. Yes, it’s the same as building an AR-15 out of a few hundred soda cans, but this one is made out of brass. It looks just great, and that final polish turns the entire project into something that looks like it’s out of a video game. Simply amazing.

If you’re looking for more ways to push your metalwork boundaries, give cast iron a try!

Continue reading “Is It A Golden Gun If It’s Made Out Of Brass?”

Simple Camera Slider Adds A Dimension Or Two To Your Shots

Camera sliders are a popular build, and properly executed they can make for impressive shots for both time-lapse sequences or real-time action. But they seem best suited for long shots, as dollying a camera in a straight line just moves subjects close to the camera through the frame.

This slider with both pan and tilt axes can make moving close-ups a lot easier. With his extremely detailed build log, [Dejan Nedalkovski] shows how he went about building his with only the simplest of materials and tools. The linear rail is simply a couple of pieces of copper pipe supported by an MDF frame. The camera trolley rides the rails on common skateboard bearings and is driven by a NEMA-17 stepper, as are the pan and tilt axes. [Dejan] also provided a barn-door style pivot to tilt the camera relative to the rails, allowing the camera to slide up and down an inclined plane for really interesting shots. The controller uses an Arduino and a joystick to drive the camera manually, or the rig can be programmed to move smoothly between preset points.

This is a step beyond a simple slider and feels a little more like full-blown motion control. We’ve got a feeling some pretty dramatic shots would be possible with such a rig, and the fact that it’s a simple build is just icing on the cake.

Continue reading “Simple Camera Slider Adds A Dimension Or Two To Your Shots”

CNC Mod Pack Hopes To Make Something Useful From A Cheap Machine Tool

It is probable that many of us have noticed a variety of very cheap CNC mills in the pages of Chinese tech websites and been sorely tempted. On paper or as pixels on your screen they look great, but certainly with the more inexpensive models there soon emerges a gap between the promise and the reality.

[Brandon Piner] hopes to address this problem, with his CNC Mod Pack, a series of upgrades to a cheap mill designed to make it into a much more useful tool. In particular he’s created a revised 3D-printed tool holder and a set of end stop switches. The tool holder boasts swappable mounts on a dovetail fitting with versions for both a laser diode and a rotary tool, allowing much better tool positioning. Meanwhile the end stops are a necessary addition that protects both tool and machine from mishaps.

The same arguments play out in the world of small CNC mills as do in that of inexpensive 3D printers, namely that the economy of buying the super-cheap machine that is nominally the same as the expensive one starts to take a knock when you consider the level of work and expense needed to make your purchase usable. But with projects like this one the barrier to achieving a quality result from an unpromising start is lowered, and the enticing prospect is raised of a decent CNC machine for not a lot.

This Is The Year Conference Badges Get Their Own Badges

Over the last few years, the art and artistry of printed circuit boards has moved from business cards to the most desirable of all disposable electronics. I speak, of course, of badgelife. This is the community built on creating and distributing independent electronic conference badges at the various tech and security conferences around the globe.

Until now, badgelife has been a loose confederation of badgemakers and distributors outdoing themselves each year with ever more impressive boards, techniques, and always more blinky bling. The field is advancing so fast there is no comparison to what was being done in years past; where a simple PCB and blinking LED would have sufficed a decade ago, now we have customized microcontrollers direct from the factory, fancy new chips, and the greatest art you’ve ever seen.

Now we have reached a threshold. The badgelife community has gotten so big, the badges are getting their own badges. This is the year of the badge add-on. We’re all building tiny trinkets for our badges, and this time, they’ll all work together. We’re exactly one year away from a sweet Voltron robot made of badges.

Continue reading “This Is The Year Conference Badges Get Their Own Badges”

Clock This! A 3D-Printed Escapement Mechanism

Traditional mechanical clockmaking is an art that despite being almost the archetype of precision engineering skill, appears rarely in our world of hardware hackers. That’s because making a clock mechanism is hard, and it is for good reason that professional clockmakers serve a long apprenticeship to learn their craft.

Though crafting one by hand is no easy task, a clock escapement is a surprisingly simple mechanism. Simple enough in fact that one can be 3D-printed, and that is just what [Josh Zhou] has done with a model posted on Thingiverse.

The model is simply the escapement mechanism, so to make a full clock there would have to be added a geartrain and clock face drive mechanism. But given a pair of 608 skateboard wheel bearings and a suitable weight and string to provide a power source, its pendulum will happily swing and provide that all-important tick. We’ve posted his short video below the break, so if Nixie clocks aren’t enough for you then perhaps you’d like to take it as inspiration to go mechanical.

A pendulum escapement of this type is only one of many varieties that have been produced over the long history of clockmaking. Our colleague [Manuel Rodriguez-Achach] took a look at some of them back in 2016.

Continue reading “Clock This! A 3D-Printed Escapement Mechanism”