Turning A Single Bolt Into A Combination Lock

In our search for big-box convenience, we tend to forget that locksmiths once not only copied keys but also created complex locks and other intricate mechanisms from scratch. [my mechanics] hasn’t forgotten, and building a lock is his way of celebrating of the locksmith’s skill. Building a combination lock from a single stainless bolt is probably also showing off just a little, and we’re completely fine with that.

Granted, the bolt is a rather large one – an M20x70 – and a few other materials such as brass rod and spring wire were needed to complete the lock. But being able to look at a single bolt and slice it up into most of the stock needed for the lock is simply amazing. The head became the two endplates, while the shank was split in half lengthwise and crosswise after the threads were turned off; those pieces were later turned down into the tubes and pins needed to create the lock mechanism. The combination wheels probably could have come from another – or longer – bolt, but we like the look of the brass against the polished stainless, as well as the etched numbers and subtle knurling. The whole thing is a locksmithing tour de force, and the video below captures all of it without any fluff or nonsense.

If working in steel and brass isn’t your thing, fear not – a 3D-printed combination lock is probably within your reach. Or laser cut wood. Or even plain paper, if you’re not into the whole security thing.

Continue reading “Turning A Single Bolt Into A Combination Lock”

Project Egress: The Hinges

A door’s hinges are arguably its most important pieces. After all, a door without hinges is just, well, a wall. Or a bulkhead, if we’re talking about a hingeless hatch on a spacecraft.

And so the assignment for creating hinges for Progress Egress, the celebration of the 50th anniversary of the Apollo 11 landing by creating a replica of the command module hatch, went to [Jimmy DiResta]. The hinges were complex linkages that were designed to not only handle the 225 pound (102 kg) hatch on the launch pad, but to allow extended extravehicular activity (EVA) while en route to the Moon. [Jimmy], a multimedia maker, is just as likely to turn metal as he is to work in wood, and his hinges are a study of 1960s aerospace engineering rendered in ipe, and extremely hard and dense tropical hardwood, and brass.

[Jimmy]’s build started with a full-size 3D-printed model of the hinge, a move that paid off as the prints acted both as templates for machining the wood components and as test jigs to make sure everything would articulate properly. Sheet brass was bent and soldered into the hinge brackets, while brass rod stock was turned on the lathe to simulate the hydraulic cylinder hinge stays of the original. The dark ipe and the brass work really well together, and should go nicely with [Fran Blanche]’s walnut and brass latch on the assembled hatch.

With [Adam Savage]’s final assembly of all the parts scheduled for Thursday the 18th, we’re down to the wire on this celebration of both Apollo and the maker movement that was at least in part born from it.

Note: the assembly started at 11:00 Eastern time, and there’s a live stream at https://airandspace.si.edu/events/project-egress-build.

Continue reading “Project Egress: The Hinges”

Automatic Cut-Off Saw Takes The Tedium Out Of A Twenty-Minute Job

For [Turbo Conquering Mega Eagle], the question was simple: Do I spend 20 minutes slaving away in front of a bandsaw to cut a bunch of short brass rods into even shorter pieces of brass rod? Or do I spend days designing and building an automatic cutoff saw to do the same job? The answer is obvious.

It’s only at the end of the video below that [TCME] reveals the need for these brass bits: they’re for riveting together the handles of knives he makes and sells. That makes the effort that went into his “Auto Mega Cut-O-Matic” a little easier to swallow, although we still think he ran afoul of this relevant XKCD. The saw is built out of scraps and odd bits using angle iron as a base and an electric die grinder to spin a cut-off wheel. A small gear motor feeds the brass rod down a guide tube until it hits a microswitch stop, which starts the cut cycle. Another motor swivels the saw to make the cut then moves it out of the way so the stock can advance. The impressive thing is that the only control mechanism is a series of microswitches, cams, levers, and springs  – no Arduino needed. Heck, there’s not even a 555, which we find a refreshing change.

Yes, it’s overkill, but he had fun and made something pretty ingenious. [Turbo Conquering Mega Eagle] always has something interesting going on in the shop, and we couldn’t help but notice him using his aluminum-melting tea kettle to make some parts for this build.

Continue reading “Automatic Cut-Off Saw Takes The Tedium Out Of A Twenty-Minute Job”

Hackaday Podcast Ep24: Mashing Smartphone Buttons, Sound Blastering, Trash Printing, And A Ludicrous Loom

Hackaday Editors Elliot Williams and Mike Szczys wade through the fun hacks of the week. Looks like Google got caught ripping off song lyrics (how they got caught is the hack) and electric cars are getting artificially noisier. We look at 3D Printing directly from used plastic, and building a loom with many hundreds of 3D printed parts. The Sound Blaster 1.0 lives again thanks to some (well-explained) reverse engineered circuitry. Your smartphone is about to get a lot more buttons that work without any extra electronics, and we’ll finish things up with brass etching and downloadable nuclear reactor plans.

Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!

Direct download (59 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast Ep24: Mashing Smartphone Buttons, Sound Blastering, Trash Printing, And A Ludicrous Loom”

Etching Large Brass Sheets Is Harder Than You Think

One of my favorite ways to think of engineering is that a glass is not half empty or half full, only twice as large as it needs to be. As useful as that idea is, it also means that I rarely put any effort into the aesthetics of my projects – I learn or accomplish what I need, desolder and recycle the components, then move on. Few of my projects are permanent, and custom cases tend to be non-reusable, so I skip the effort and expense.

Once in a while though, I need to make a gift. In that case form and function both become priorities. Thankfully, all that glitters is not gold – and over the last year I’ve been learning to etch the copper alloys commonly classified as ‘brass’. We’ve covered some truly excellent etched brass pieces previously, and I was inspired to try and etch larger pieces of metal (A4 and larger) without sacrificing resolution. I thought this would be just like etching circuits. In fact, I went through several months of failed attempts before I produced anything halfway decent!

Although I’m still working on perfecting my techniques, I’ve learned enough in the meantime to give a report. Read on if you’re feeling the need for more fancy brass signs in your life.

Continue reading “Etching Large Brass Sheets Is Harder Than You Think”

Dead Bug Arduino Is Lively And Shield-Compatible

Microcontroller demo boards such as the Arduino UNO are ubiquitous on Hackaday as the brains of many a project which inevitably does something impressive or unusual. Sometime someone builds a particularly tiny demo board, or an impressively large one. In the case of the board featured here, the Arduino is a gorgeous labor of love which can’t really be called a board since there is no PCB. Instead of the traditional fiberglass, [Jiří Praus] formed brass bars into the circuitry and held it together with solder.

This kind of dedication to a project leaves an impression. His notes show he saw the barest way to operate an ATMega328, built it, tested, and moved on to the power supply to make it self-sustaining, then onto the communication circuit, and finally the lights. The video below shows a fully-functional Arduino happily running the blink program. He plans to encase the brass portion in resin to toughen it up and presumably keep every bump from causing a short circuit. The components are in the same position due to a custom jig which means a standard shield will fit right into place.

The Arduino started far less flashy yet nearly as fragile, and it has grown. And shrunk.

Continue reading “Dead Bug Arduino Is Lively And Shield-Compatible”

Casting A Cannon Is A Lot Harder Than You Think

We’ve seen backyard casting, and for the most part, we know what’s going on. You make a frame out of plywood or two by fours, get some sand, pack it down, and very carefully make a mold around a pattern. This is something else entirely. [FarmCraft101] is casting a bronze cannon. Sure, it’s scaled down a bit, but this is the very limit of what sanity would dictate a single person can cast out of molten metal.

This attempt at casting a cannon is more or less what you would expect from a backyard bronze casting experiment. There’s a wooden flask and a greensand mold, everything is tamped down well and there’s a liberal coating of talcum powder inside. This is a large casting, though, and this presented a problem: during the pour, the halves of the flask were only held together with a few c-clamps. This ended poorly, with molten bronze pushing against the mold and eventually flowing onto the garage floor. Doing this alone was perhaps a bad idea.

The failure of the mold meant some math was necessary, and after some quick calculations it was found that more than 300 pounds pushing the sides of the mold apart. A second pour, with the sides of the flask bound together with nylon straps, was much more successful with a good looking bronze cannon ready for some abuse with a wire wheel.

This is only the first video in the series, with the next videos covering the machining and boring out of the barrel. That’s some serious craft right there.

Continue reading “Casting A Cannon Is A Lot Harder Than You Think”