A Pi Pico Makes A Spectrum Laptop

There are many retrocomputer emulation projects out there, and given the relative fragility of the original machines as they enter their fifth decade, emulation seems to be the most common way to play 8-bit games. It’s easy enough to load one on your modern computer, but there are plenty of hardware options, too. “The computer we’d have done anything for back in 1983” seems to be a phrase many of them bring to mind, but it’s so appropriate because they keep getting better. Take [Stormbytes1970]’s Pi Pico-powered Sinclair ZX Spectrum mini laptop (Spanish language, Google Translate link), for example. It’s a slightly chunky netbook that’s a ZX Spectrum, and it has a far better keyboard than the original.

On the PCB is the Pico, the power supply circuitry, an SD card, and a speaker. But it’s when the board is flipped over that the interesting stuff starts. In place of the squidgy rubber keyboard of yore, it has a proper keyboard,. We’re not entirely sure which switch it uses, but it appears to be a decent one, nevertheless. The enclosure is a slick 3D-printed sub-netbook for retro gaming on the go. Sadly, it won’t edit Hackaday, so we won’t be slipping one in the pack next time we go on the road, but we like it a lot.

Continue reading “A Pi Pico Makes A Spectrum Laptop”

Where This Xmas Card’s Going, We Don’t Need Batteries!

Energy harvesting, the practice of scavenging ambient electromagnetic fields, light, or other energy sources, is a fascinating subject that we don’t see enough of here at Hackaday. It’s pleasing then to see [Jeff Keacher]’s Christmas card: it’s a PCB that lights up some LEDs on a Christmas tree, using 2.4 GHz radiation, and ambient light.

The light sensors are a set of LEDs, but the interesting part lies in the RF harvesting circuit. There’s a PCB antenna, a matching network, and then a voltage multiplier using dome RF Schottky diodes. These in turn charge a supercapacitor, but if there’s not enough light a USB power source can also be hooked up. All of this drives a PIC microcontroller, which drives the LEDs.

Why a microcontroller, you ask? This card has an interesting trick up its sleeve, despite having no WiFi of its own, it can be controlled over WiFi. If the 2.4 GHz source comes via proximity to an access point, there’s a web page that can be visited with a script generating packets in bursts that produce a serial pulse train on the DC from the power harvester. The microcontroller can see this, and it works as a remote. This is in our view, next-level.

The Last Acorn BBC Computer Wasn’t A BBC Micro

For home computer users, the end of the 1980s was the era of 16-bit computers. The challenge facing manufacturers of 8-bit machines through the middle of the decade was to transfer their range and customers to the new hardware, and the different brands each did this in their own way. Commodore and Atari had 68000-based powerhouses, and Apple had their 16-bit-upgraded IIGS for the middle ground below the Mac, but what about Acorn, makers of the BBC Micro? They had the Archimedes, and [RetroBytes] takes us through how they packaged their 32-bit ARM processor for consumers.

The A3000 was the computer you wanted if you were a geeky British kid at the end of that decade, even if an Amiga or an ST was what you got. Schools had bought a few of the desktop Archimedes’, so if you were lucky you’d got to know Arthur and then RiscOS, so you knew just how fast these things were compared to the competition. The video below the break takes a dive into the decisions behind the design of this first ARM consumer product, and along the way it explains a few things we didn’t know at the time.  We all know what happened to Acorn through the 1990s and we all use ARM processors today, so it’s a fascinating watch. If only an extra two hundred quid had been in the kitty back then and we could have bought one ourselves.

If you have never used an Archimedes you can get pretty close today with another Cambridge-designed and ARM-powered computer. RiscOS never went away, and you can run it on a Raspberry Pi. As we found, it’s still pretty useful.

Continue reading “The Last Acorn BBC Computer Wasn’t A BBC Micro”

Chirality Could Kill Us All, If We Let It

In our high school chemistry classes we all learn about chirality, the property of organic molecules in which two chemically identical molecules can have different structures that are mirror images of each other. This can lead to their exhibiting different properties, and one aspect of chirality is causing significant concerns in the field of synthetic biology. The prospect of so-called mirror organisms is leading to calls from a group of prominent scientists for research in the field to be curtailed due to the risks they would present.

Chirality is baked into all life; our DNA is formed of right-handed molecules while our proteins are left handed. The “mirror” organisms would reverse either or both of these, and could in theory be used to improve biochemical production processes. The concern is that these organisms would evade both the immune systems of all natural life forms, and any human defences such as antibiotics, thus posing an existential risk to life. It’s estimated that the capacity to produce such a life form lies more than a decade away, and the scientists wish to forestall that by starting the conversation early. They are calling for a halt to research likely to result in these organisms, and a commitment from funding bodies not to support such research.

Warnings of the dangers from scientific advances are as old as science itself, and it’s safe to say that many such prophecies have come from dubious sources and proved not to have a basis in fact. But this one, given the body of opinion behind it, is perhaps one that should be heeded.

Header: Original: Unknown Vector: — πϵρήλιο, Public domain.

Use Your RTL, In The Browser

The web browser started life as a relatively simple hypertext reading application, but over the 30+ years since the first one displayed a simple CERN web page it has been extended to become the universal platform. It’s now powerful enough to run demanding applications, for example a full software-defined radio. [Jtarrio] proves this, with an application to use an RTL-SDR, in HTML5.

It’s a fork of a previous Google-Chrome-only FM receiver, using the HTML5 WebUSB API, and converted to TypeScript. You can try it out for yourself if you have a handy RTL dongle lying around, it provides an interface similar to the RTL apps you may be used to.

The Realtek digital TV chipset has been used as an SDR for well over a decade now, so we’re guessing most of you with an interest in radio will have one somewhere. The cheap ones are noisy and full of spurious peaks, but even so, they’re a bucket of fun. Now all that’s needed is the transmit equivalent using a cheap VGA adapter, and the whole radio equation could move into the browser.

British Spooks Issue Yearly Teaser

As a British taxpayer it’s reassuring to know that over in Cheltenham there’s a big round building full of people dedicated to keeping us safe. GCHQ is the nation’s electronic spying centre, and just to show what a bunch of good eggs they are they release a puzzler every year to titillate the nation’s geeks. 2024’s edition is out if you fancy trying it, so break out your proverbial thinking caps.

The puzzle comes in several stages each of which reveals a British landmark, and we’re told there’s a further set of puzzles hidden in the design of the card itself. We know that Hackaday readers possess fine minds, so you’ll all be raring to have a go.

Sadly GCHQ would for perfectly understandable reasons never let Hackaday in for a tour, but we’ve encountered some of their past work. First the Colossus replica codebreaking computer at Bletchley Park was the progenitor of the organisation, and then a few years ago when they had an exhibition from their archive in the London Science Museum.

Ore To Iron In A Few Seconds: New Chinese Process Will Revolutionise Smelting

The process of ironmaking has relied for centuries on iron ore, an impure form of iron oxide, slowly being reduced to iron by carbon monoxide in a furnace. Whether that furnace is the charcoal fire of an Iron Age craftsman or a modern blast furnace, the fundamental process remains the same, even if the technology around it has been refined. Now details are emerging of a new take on iron smelting from China, which turns what has always been a slow and intensive process into one that only takes a few seconds. So-called flash ironmaking relies on the injection of a fine iron ore powder into a superheated furnace, with the reduction happening explosively and delivering a constant stream of molten iron.

Frustratingly there is little detail on how it works, with the primary source for the news coverage being a paywalled South China Morning Post article. The journal article alluded to has proved frustratingly difficult to find online, leaving us with a few questions as to how it all works. Is the reducing agent still carbon monoxide, for example, or do they use another one such as hydrogen? The interesting part from an economic perspective is that it’s said to work on lower-grade ores, opening up the prospect for the Chinese steelmakers relying less on imports. There’s no work though on how the process would deal with the inevitable slag such ore would create.

If any readers have journal access we’d be interested in some insight in the comments, and we’re sure this story will deliver fresh information over time. Having been part of building a blast furnace of our own in the past, it’s something we find interesting