Fixing Human Sleep With Air Under Pressure

By and large, the human body is designed to breathe from birth, and keep breathing continuously until death. Indeed, if breathing stops, lifespan trends relatively rapidly towards zero. There’s a whole chunk of the brain and nervous system dedicated towards ensuring oxygen keeps flowing in and carbon dioxide keeps flowing out.

Unfortunately, the best laid plans of our body often go awry. Obstructive sleep apnea is a condition in which a person’s airways become blocked by the movement of soft tissues in the throat, preventing the individual from breathing. It’s a mechanical problem that also has a mechanical solution—the CPAP machine.

Continue reading “Fixing Human Sleep With Air Under Pressure”

Why Apple Dumped 2,700 Computers In A Landfill In 1989

In 1983, the Lisa was supposed to be a barnburner. Apple’s brand-new computer had a cutting edge GUI, a mouse, and power far beyond the 8-bit machines that came before. It looked like nothing else on the market, and had a price tag to match—retailing at $9,995, or the equivalent of over $30,000 today.

It held so much promise. And yet, come 1989, Apple was burying almost 3,000 examples in a landfill. What went wrong?

Continue reading “Why Apple Dumped 2,700 Computers In A Landfill In 1989”

Engine Data Displayed Live On Dash

In the auto world, there are lots of overarching standards that all automakers comply with. There are also lots of proprietary technologies that each automaker creates and uses for its own benefit. [Shehriyar Qureshi] has recently been diving into Suzuki’s Serial Data Line standard, and has created a digital dash using the data gained.

The project started with Python-based scanner code designed to decode Suzuki’s SDL protocol. Armed with the ability to read the protocol, [Shehriyar] wanted to be able to do so without having to haul a laptop around in the car. Thus, the project was ported to Rust, or “oxidized” if you will.

More after the break…

Continue reading “Engine Data Displayed Live On Dash”

2025 One-Hertz Challenge: ZX Spectrum Is Now A Z80 Frequency Counter

The ZX Spectrum is perhaps most fondly remembered as a home computer and a games machine. [Tito] has grabbed the faithful black plastic box and turned it into a frequency counter as an innovative entry to our 2025 One Hertz Challenge.

The code was prepared in assembly using ZASM—a Z80 online assembler. It works in quite a simple manner. The code runs for one second at a time, counting rising edges on the EAR port of the ZX Spectrum. Those edges are added up to determine the frequency in question, and the job is done. [Tito] has tested the code and found it’s capable of reading frequencies up to 20 KHz. Since it runs on a one second period, it’s thus eligible for entry by meeting the requirements of the One Hertz Challenge. Code is available on Github for the curious.

The ZX Spectrum has a clock speed of 3.5 MHz, meaning it’s not exactly the tool of choice if you’re reading faster signals. We’ve seen similar done before. In any case, this project was a great way to exercise assembly coding skills and to bust out some classic Speccy hardware—and that’s always a good time. If you’ve got your own retrocomputer hacks brewing up in the lab, don’t hesitate to let us know!

2025 One-Hertz Challenge: HP Logic Probe Brought Into The Future

[Robert Morrison] had an ancient HP 545A logic probe, which was great for debugging SMT projects. The only problem was that being 45 years old, it wasn’t quite up to scratch when it came to debugging today’s faster circuitry. Thus, he hacked it to do better, and entered it in our 2025 One Hertz Challenge to boot!

[Robert’s] hack relied on the classic logic probe for its stout build and form factor, which is still useful even on today’s smaller hardware. Where it was lacking was in dealing with circuits running at 100 MHz and above. To rectify this, [Robert] gave the probe a brain transplant with a Sparkfun Alorium FPGA board and a small display. The FPGA is programmed to count pulses while measuring pulse widths and time, and it then drives the display to show this data to the user. There’s also a UART output, and [Robert] is actively developing further logic analyzer features, too.

You might be questioning how this project fits in the One Hertz Challenge, given it’s specifically built for running at quite high speeds. [Robert] snuck it in under the line because it resamples and updates the display on a once-a-second basis. Remember, as per the challenge site—”For this challenge, we want you to design a device where something happens once per second.” We’re giving you a lot of leeway here!

Often, old scopes and probes and other gear are really well built. Sometimes, it’s worth taking the best of the old physical hardware and combining it with modern upgrades to make something stout that’s still useful today. Meanwhile, if you’re cooking up your own neo-retro-logic probes, don’t hesitate to notify the tipsline!

Mach Cutoff: Bending The Sonic Boom

Supersonic air travel is great if you want to get somewhere quickly. Indeed, the Concorde could rush you from New York to London in less than three and a half hours, over twice as fast as a conventional modern airliner. Despite the speed, though, supersonic passenger service has never really been sustainable thanks to the noise involved. Disruption from sonic booms has meant that supersonic travel over land is near-universally banned. This strictly limits the available routes for supersonic passenger jets, and thus their economic viability.

Solving this problem has been a hot research topic for some time. Now, it appears there might be a way forward for supersonic air travel over land, using a neat quirk of Earth’s atmosphere.

Continue reading “Mach Cutoff: Bending The Sonic Boom”

Could Space Radiation Mutate Seeds For The Benefit Of Humanity?

Humans have forever been using all manner of techniques to better secure the food we need to sustain our lives. The practice of agriculture is intimately tied to the development of society, while techniques like selective breeding and animal husbandry have seen our plants and livestock deliver greater and more nourishing bounty as the millennia have gone by. More recently, more direct tools of genetic engineering have risen to prominence, further allowing us to tinker with our crops to make them do more of what we want.

Recently, however, scientists have been pursuing a bold new technique. Researchers have explored using radiation from space to potentially create greater crops to feed more of us than ever.

Continue reading “Could Space Radiation Mutate Seeds For The Benefit Of Humanity?”