Hacking The AR Drone: Intro

Ever since we played with the original AR drone back at CES a few years ago, we’ve been keeping an eye on them. While we all agree there are better quadcopters out there, the price point for a ready-to-fly quadcopter of this size is really great with these.

When the fake video from FPS Russia of the weaponized drone made the rounds earlier this year, we were surprised at how people reacted. Anyone who has messed with quadcopters recognized it as fake right off the bat (not to mention the overly cliche fake russian character).

We won’t be adding a full fledged firearm to this. Mainly because it simply can’t lift the weight (There are ones that can, but we couldn’t justify the cost just for that). We do have some ideas though.

Lets go over the specs of the AR Drone 2.0 first.

Continue reading “Hacking The AR Drone: Intro”

Autonomous Fixed-wing Drone Threads The Needled In A Parking Garage

We’ve got something of a love affair going on with quadcopters, but there’s still room for a little something on the side. This fixed-wing drone can pull off some pretty amazing navigation. MIT’s Robust Robotics Group is showing off the work they’ve done with the plane, culminating in a death-defying flight through a parking garage (video after the break). This may not sound like a huge accomplishment, but consider that the wingspan is over two meters and repeated runs at the same circuit brought it within centimeters of clipping support columns.

Unlike the precision quadcopters which depend on stationary high-speed cameras for feedback, this drone is self-contained. It does depend on starting out with a map of its environment, using this in conjunction with a laser rangefinder and inertial sensors to plot its route and adjust as necessary. We think the thing must have to plan a lot further ahead than a quadcopter since it lacks the ability to put on the brakes and hover. This is, however, one of the strengths of the design. Since it uses a fixed-wing approach it can stay in air much longer than a quadcopter with the same battery capacity.

Continue reading “Autonomous Fixed-wing Drone Threads The Needled In A Parking Garage”

Electromagnetic Field Camp

Emf Electromagnetic Field Camp is a three-day camping festival for people with an inquisitive mind or an interest in making things: hackers, geeks, scientists, engineers, artists, and crafters.

There will be people talking about everything from genetic modification to electronics, blacksmithing to high-energy physics, reverse engineering to lock picking, crocheting to carpentry, and quadcopters to beer brewing. If you want to talk, there’ll be space for you to do so, and plenty of people who will want to listen.

EMF is a volunteer effort by a non-profit group, inspired by European and US hacker camps like CCC, HAR, and toorcamp.  This year on Friday 31st August – Sunday 2nd September 2012 Will hold the first Uk meeting of its kind.

Events and activities will run throughout the day and into the evening, everything else (chats, debates, impromptu circus performances, orbital laser launches) will run as long as your collective energy lasts.

The Event is to be held at Pineham Park, Milton Keynes, UK.

As a Hackaday viewer you can get discounted tickets.

[thanks Jonty]

Rocket Telemetry From UAV Hardware

When we posted our call for rocketry hacks and builds, we expected to see a few altitude sensors and maybe a GPS module or two. Apparently, we forgot similar hardware is very popular in the remote-controlled aircraft world, and can be successfully added to a rocket as [Kevin] and his ArduPilot equipped J motor rocket showed us

The ArduPilot is a small Arduino comparable board designed for UAVs, quadcopters, and other whirligigs not powered by rocket motors. To get real-time telemetry from his rocket, [Kevin] attached a GPS receiver and an XBee transmitter. When launched on an H165 motor, [Kevin] was able to keep a radio lock on his rocket, allowing him to pull down data in real-time.

There are a few drawbacks to using the ArduPilot to collect flight data; the ArduPilot only reports ground speed, a somewhat useless feature if the vehicle is going straight up. Also, there is no way for [Kevin] to record data to an SD card; the ground team must be able to receive the XBee, lest bits of data go missing. For most rockets the radio issue shouldn’t be a problem. [Kevin] launched the same hardware on a J motor and was able to receive data from 3600 AGL.

[Vijay Kumar’s] TED Talk On The State Of Quadcopter Research

[Vijay Kumar] is a professor at the University of Pennsylvania and the director of the GRASP lab where research centering around autonomous quadcopters is being met with great success. If you were intrigued by the video demonstrations seen over the last few years, you won’t want to miss the TED talk [Dr. Kumar] recently gave on the program’s research. We touched on this the other week when we featured a swarm of the robots in a music video, but there’s a lot more to be learned about what this type of swarm coordination means moving forward.

We’re always wondering where this technology will go since all of the experiments we’ve seen depend on an array of high-speed cameras to give positional feedback to each bot in the swarm. The image above is a screenshot taken about twelve minutes into the TED talk video (embedded after the break). Here [Dr. Kumar] addresses the issue of moving beyond those cameras. The quadcopter shown on the projection screen is one possible solution. It carries a Kinect depth camera and laser rangefinder. This is a mapping robot that is designed to enter an unknown structure and create a 3D model of the environment.

The benefits of this information are obvious, but this raises one other possibility in our minds. Since the robots are designed to function as an autonomous swarm, could they all be outfitted with cameras, and make up the positional-feedback grid for one another? Let us know what you think about it in the comments section.

Continue reading “[Vijay Kumar’s] TED Talk On The State Of Quadcopter Research”

Weekly Roundup 2/11/12


In case you have been on vacation, here is the best that we have had on our blog in the past week:

In first place is a post about [the University of Pennsylvania’s] quadcopter team. This time they have a group of twenty quadcopters flying in formation.

In second place is a post about a nice project by [Joel] where he converted an overhead projector into a TV projector by projecting through a LCD TV. He went all-out on this one by using a CNC machine to cut out a special holder for the LCD and the fans necessary to cool it.

Next up we have a post about a project where a 55 gallon plastic barrel is turned into a wind turbine. We’re not sure about how much power this would produce but it would probably be fun to play around with.

Following that is a follow up post about Printrbot, an inexpensive 3D printer which we previously posted about. It was a successful Kickstarter project a couple of months ago and now the design files have been released into the wild. Check it out!

Finally we finish off with a post about how to build a solid-state Tesla coil. It’s presented in an Instructable with 12 easy steps so that you too can feed your high-voltage addiction.

Dog Pod Grid One Step Closer To Reality

What’s better than one amazingly acrobatic quadcopter? How about a swarm of acrobatic micro-quadcopters? It’s not a rhetorical question, but an experimental reality. A team at the University of Pennsylvania are showing off their latest round of hovering robots which can move in formation and alter their orientation as a swarm.

You may remember us salivating over the unbelievable stunts the team pulled off with a single ‘copter back in 2010. That device needed a sophisticated camera installation to give provide feedback, and this uses the same framework. But we don’t that detracts from the achievement; it’s simply a future hurdle for the project.

The video after the break shows some of the stunts the slew of whirring devices are capable of. Watching them move as a grid, and even landing simultaneously, we can’t help but think of the Dog Pod Grid from Neal Stephenson’s book The Diamond Age. It was used as a protection system, keeping unwanted flying intruders out. Doesn’t sound so far-fetched any more, does it?

Continue reading “Dog Pod Grid One Step Closer To Reality”