It seems like every few months we cover another garage door opener, and the concept is quickly becoming the “Hello World” of DIY home automation. In this installment, reader [ray] made his own garage door opener and chose the ESP8266 as the wireless interface of choice, but spiced the application up with an ultrasonic sensor that detects whether the car is in the garage and a web app that shows history, plus integration with Blynk for remote access. For posterity, he made the project open source as well.
The video is well produced with lots of details and instructions, and the circuit board and assembly are refined and clean. It may be a “Hello World”, but it’s done right.
This massive LED display was assembled on a PVC banner (it can be rolled up!) measuring 2m by 1.5m, it boasts well over 6000 pixels, and as you can see from the photo — looks fantastic.
We recently published a post on How Many LEDs are Too Many, which spawned many comments showing off even more impressive displays with even higher LED counts. This is just one of them — and making it flexible as well? That’s just the icing on the cake.
To make the display flexible, [Elektric-Junkys] had a custom PVC banner printed with stripes to help them align 58 parallel strips of WS2811 LEDs on the surface.
Last time I talked about getting started with CPU design by looking at older designs before trying to tackle a more modern architecture. In particular, I recommended Caxton Foster’s Blue, even though (or maybe because) it was in schematic form. Even though the schematics are easy to understand, Blue does use a few dated constructs and you probably ought to build your take on the design using your choice of VHDL or Verilog.
In my case, my choice was Verilog. You can find my implementation of Blue on Opencores.org. I made quite a few changes to Foster’s original design. For example, armed with semiconductor memory, I managed to get all instructions to operate in one major cycle (which is, of course, 8 minor cycles). I also modernized the clock generation and added some resources and instructions.
We are just two weeks away from the Hackaday | Belgrade conference, and tickets have completely sold out. That means you can’t get your hands on one of these sweet hardware badges, but you can still take home some prizes for pulling off a gnarly hack with the badge firmware.
What we’re talking about is the Hackaday Belgrade Badge Demoscene – which includes a surrogate presenter program for anyone who wants to send in their own code for the device. You have two weeks to work on and submit your code — and we’ve made it really easy for anyone who has a working knowledge of C.
The day of the conference we will download all entries, and have a surrogate at the conference load it onto their badge and present it on your behalf. There is a separate pool of prizes for online entries, so hackers not at the con will win. And of course we’ll be celebrating the awesome demos with some posts on the front page.
No Hardware Needed
Badge emulator scrolling the word “Hackaday”
Hack in C for Abstracted Bliss or Be Hardcore:
You can use the emulator shown here to write your code for this badge. It comes with a set of basic functions that abstracts away the low-level hardware functions, and launches a demo window on your computer to test out your code. Check out this barebones C framework to get started.
For those that want more control, we have published the official assembly code that the badges will ship with (including a user manual). We’ll be squashing bugs right up to the day of the con). You can alter and compile this code yourself, or just start from scratch using the design spec if you prefer to travel the hardcore bit-monkey path.
Either way, you have an 8×16 display and 4 buttons to work with. Exercise your creativity and amaze us by doing a lot on a rather modest canvas. That’s what demoscene is all about.
How to Enter
Entry is easy, just start a project on Hackaday.io and submit it to the Belgrade Badge Demoscene contest using the “Submit Project To…” menu on your project page. You need to upload .C and .H files, or a precompiled .HEX to the file hosting part of your project page by Saturday, April 9th.
That’s the extent of the requirements. But it would be super fun if you recorded the software emulator playing your demo for all to see. The easiest way to do this is to record a video of your computer screen using your smartphone. Good luck to all!
Many successful large-scale projects don’t start out large: they start with a small working core and grow out from there. Building a completely open-source personal computer is not a weekend project. This is as much a retelling of events as it is background information leading up to a request for help. You’ll discover that quite a lot of hard work has already been put forth towards the creation of a completely open personal computer.
When I noticed the Kestrel Computer Project had been submitted via the Hackaday tips line I quickly tracked down and contacted [Samuel] and asked a swarm of questions with the excitement of a giddy schoolgirl. Throughout our email conversation I discovered that [Samuel] had largely kept the project under the radar because he enjoyed working on it in his down time as a hobby. Now that the project is approaching the need for hardware design, I posed a question to [Samuel]: “Do you want me to write a short article summarizing years of your work on Kestrel Project?” But before he could reply to that question I followed it up with another: “Better yet [Samuel], how about we tell a more thorough history of the Kestrel Project and ask the Hackaday community for some help bringing the project home!?” Continue reading “Kestrel Computer Project”→
It’s been a while since we’ve seen a balancing cube, but as different companies and universities start making them, we’re excited to see how they continue to develop. This one doesn’t really have a catchy name, but its designers [Erik Bjerke] and [Björn Pehrsson] call it a Nonlinear Mechatronic Cube.
Very similar to Cubli — the first self-balancing cube we remember seeing — this cube can jump up from surfaces, “walk” and balance in any orientation.
The system features an IMU to determine orientation, three gyros powered by beefy 70W motors, three bicycle brakes powered by servo motors, and a microprocessor to control it all.
The way it balances is quite obvious with the gyros, but the ability to jump comes from the rapid breaking of the “reaction wheels”, allowing for a sudden impulse of force that is powerful enough to reorient the entire cube. The interesting part is how both systems are actually controlled individually with separate control systems.
The Raspberry Pi Zero – and the not-perpetually-out-of-stock Raspberry Pi A+ – only have one USB port, but behind that port is a lot of functionality. This is an OTG USB port, and just like the USB port on your smartphone, this little plug can become any kind of USB device. Transforming the Pi into a USB gadget allows it to be a serial connection, MIDI device, audio source or sink, or a USB mass storage device.
[Francesco] was especially interested in the USB mass storage capability of the Raspberry Pi Zero and built a small project to show off its capabilities. He turned a Pi Zero into the controller for a digital picture frame, constantly displaying all the image files on a small screen.
The build started with [Andrew Mulholland]’s guide for Pi Zero OTG modes, with just a few modifications. When the Pi is plugged into a PC, it automatically becomes a 100 Megabyte USB storage device. You don’t need that much space on a digital picture frame, anyway.
While setting up a digital picture frame is easy enough, there’s still a tremendous amount of untapped potential in using the Pi Zero as a USB gadget. With enough buttons, switches, and sensors, the Pi can become a wearable MIDI device, or with the Pi camera module, an IP webcam. Neat stuff, and we can’t wait to see what the community comes up with next.