Copter rotor hub

UAV Coaxial Copter Uses Unique Drive Mechanism

Personal UAV’s are becoming ubiquitous these days, but there is still much room for improvement. Researchers at [Modlab] understand this, and they’ve come up with a very unique method of controlling pitch, yaw, and roll for a coaxial ‘copter using only the two drive motors.

In order to control all of these variables with only two motors, you generally need a mechanism that adjusts the pitch of the propeller blades. Usually this is done by mounting a couple of tiny servos to the ‘copter. The servos are hooked up to the propellers with mechanical linkages so the pitch of the propellers can be adjusted on the fly. This works fine but it’s costly, complicated, and adds weight to the vehicle.

[Modlab’s] system does away with the linkages and extra servos. They are able to control the pitch of their propellers using just the two drive motors. The propellers are connected to the motors using a custom 3D printed rotor hub. This hub is specifically designed to couple blade lead-and-lag oscillations to a change in blade pitch. Rather than drive the motors with a constant amount of torque, [Modlab] adds a sinusoidal component in phase with the current speed of the motor. This allows the system to adjust the pitch of the blades multiple times per rotation, even at these high speeds.

Be sure to watch the demonstration video below. Continue reading “UAV Coaxial Copter Uses Unique Drive Mechanism”

Retrotechtacular: Pipeline To The Arctic

They said it couldn’t be done, and perhaps it shouldn’t have been attempted. Shouldas and couldas aside, the oil crisis of the 1970s paved the legislative way for an 800-mile pipeline across the Alaskan frontier, and so the project began. The 48-inch diameter pipe sections would be milled in Japan and shipped to Alaska. Sounds simple enough. But of course, it wasn’t, since the black gold was under Prudhoe Bay in Alaska’s North Slope, far away from her balmy southern climes.

The Trans-Alaska Pipeline System was constructed in three sections: from Valdez to Fairbanks, Fairbanks to a point in the Brooks Pass, and south from Prudhoe Bay to the mountain handoff. Getting pipe to the Valdez and Fairbanks is no big deal, but there is no rail, no highway, and no standard maritime passage to Prudhoe Bay. How on earth would they get 157 miles worth of 58-foot sections of pipe weighing over 8 tons each up to the bubblin’ crude?

Continue reading “Retrotechtacular: Pipeline To The Arctic”

FPGA Ambilight Clone Packs A Ton Of Features

[Stephen] designed a standalone Ambilight clone built around an FPGA and recently added many new features to make his design even better. His original design was based around a Spartan 3-E FPGA, but his new design uses the Papilio One board with a Spartan-6 LX9 FPGA. This gives him dedicated DSP hardware and more RAM, allowing him to add more processing-intensive features.

[Steven]’s new board can drive up to 4096 LEDs total, and each LED is colored from one of 256 segmented screen areas. The output of the LEDs is smoothed over a configurable time period which makes the result a bit more pleasant. [Steven] also added color correction matrices and gamma correction tables to make up for differences in LED coloration and so the output can be fine-tuned to the color of the wall behind the TV.

Finally, [Steven] added multiple configurations which can be stored in Flash memory. The FPGA can detect letterboxes and pillarboxes in the video stream and change to a corresponding configuration automatically, so settings rarely need to be manually adjusted. He also added an extensive serial interface to configure all of the parameters and configurations in Flash. Be sure to check out the video after the break to see his setup in action.

Continue reading “FPGA Ambilight Clone Packs A Ton Of Features”

Create An Inclinometer Using A Raspberry Pi

The latest gizmo that you can make using the cheap and easy Raspberry Pi is here courtesy of [Mark Williams]. He has hooked up an inertial measurement unit (IMU) to the Pi and built an inclinometer to use to measure the various angles of an off-road vehicle.

This particular guide goes through the setup of SDL to control the video output to a small screen. Then, a function is created to rotate the images based on input from the IMU so that the vehicle position can be shown graphically on the screen. Now, when your truck is about to roll over on a hill, you’ll get advance warning!

Of course, this whole project is predicated on installing the IMU and getting it up and running on the Raspberry Pi in the first place. [Mark] has you covered on a guide for setting that up as well. This delves into setting up the IMU over I2C to get it talking to the Raspberry Pi, and then converting the raw data from the IMU into data that is more usable. Be sure to check out [Mark]’s page for all of the code and details!

Boy Off The Grid For Years Writes GUI For DOS

In a hacker version of Jumanji, when [fiberbundle]’s parents divorced, his thrice-fugitive new stepfather took him to a remote location in Australia without any access to technology or the outside world. With him he brought an old 486, a gift from his real dad. Lest the police discover them, [fiberbundle] was forbidden contact from most of society and even restricted in the books he was allowed to read.

The boy spent years trying to get the most he could out of his two-generations-old PC. Using only two textbooks from a decade and a half earlier, DOS 6.0, and QBasic he managed to write his own shell dubbed OSCI (pronounced “Aussie”), a ray-caster 3d engine and lots more. No mentors, no Internet. The computers at school were even more outdated Power Macs.

Eventually life returned him to civilization to be mindblown by modern technology 1000x as powerful. He went from playing text-based adventures he had to write for himself, to seeing Crysis. From QBasic to C++. From ASCII art “shooters” to Half-Life 2. From a 486 to a 4-core CPU. From a rural library to Wikipedia.

Follow the link above to see screens of his projects over the years. As of yet no one has verified the story, but, even if only that it is worth a read.

Thanks [Gustavo] for the tip.

Using Lasers For Hair Growth

HowToLou is back with a rather interesting build: One hundred laser diodes for hair growth.

Before you guffaw at the idea of lasers regrowing hair lost to male pattern baldness, there’s a surprising amount of FDA documents covering the use of laser diodes and red LEDs for hair growth and an interesting study covering teeth regrowth with lasers. Yes folks, it’s a real thing, but something that will never get a double-blind study for obvious reasons.

[Lou] is building his hat with 100 laser diodes, most of which were sourced from Amazon. These diodes were implanted in a piece of foam flooring, a rather interesting solution that puts dozens of diodes in a flexible module that’s pretty good for making a wearable device.

The lasers are powered by three AA batteries, stuffed into a four-slot battery holder that was modified to accommodate a power switch. [Lou] has been wearing a nine-diode hat for a month now, and if the pictures are to be believed, he is seeing a little bit of hair growth. At the very least, it’s an interesting pseudo-medical build that seems to be producing results.

Hats like these are commercially available for about $700. [Lou] built his for about $60. We’re calling that a win even if it doesn’t end up working to [Lou]’s satisfaction. Just don’t look at the lasers with your remaining eye.

Continue reading “Using Lasers For Hair Growth”

diy video microscope

DIY Video Microscope Used For Soldering SMD Parts

Fortunately (or unfortunately), [ucDude] has had the opportunity to try out a high quality video microscope while soldering some small surface mount components. He loved it, the problem was he had a hard time going back to using just his eyes. He wanted a video microscope but the cost for a professional one could not be justified. The solution? Build one!

[ucDude] called on one of his photographer friends to help. After discussing the project they decided to use a webcam and a lens from an SLR camera. Testing with the webcam resulted in an image that could not be zoomed-in enough, plus having to connect it to an external computer proved to be a bulky solution. They next tried a Raspberry Pi, camera module and zoom monocular. It worked great! The entire assembly was then mounted to a camera boom stand making it easy for the camera to be positioned over the work area and out of the way of hands and soldering irons. The Raspberry Pi’s HDMI output is plugged straight into an HD monitor. The result is exactly what [ucDude] was looking for. Now he can quickly and confidently solder his surface mount circuit boards.