Electrifying a Honda NC50 Express

[Quasse] bought a 1978 Honda NC50 Express moped with the intention of fixing it up and riding it, only to find that the engine was beyond repair. So, they did what any self-respecting hacker would do: tear out the motor and replace it with an electric one. It’s still a work in progress, but they have got it up and running by replacing the engine with a Turnigy SK3 6374 motor, a 192KV motor that [Quasse] calculated should be able to drive the moped at just over 30 miles per hour. Given that this was the top speed that the NC50 could manage on gas power, that’s plenty fast.

Continue reading “Electrifying a Honda NC50 Express”

Make Your Cactus Bionic With Bionic Cactus

The closest some of us at Hackaday get to a green thumb comes when we are painting, so for us and other folks not gifted in the gardening department Bionic Cactus might help. It’s a neatly designed water and light control system, built around an ESP8266. You can control the system through a web interface, setting a schedule for water and light and seeing how much water is left in the reservoir. There is also a soil moisture sensor and it will even email you when it is running low on water. As creator [SamsonKing] notes, if you combine this with a 3D-printed plant pot and light holder, and you’ve got a complete system from growing herbs and spices in the middle of winter.

[SamsonKing] created the system using PlatformIO, a neat open source Internet of Things development platform that means you could probably switch the system over to run on other low-power platforms if you had them lying around. But with an ESP8266 typically costing no more than a few bucks, it’s a neat and low-cost way to keep your plants fed and watered.

Automated gardening has featured many times here at Hackaday, just one of many is this indoor hydroponic lettuce factory.

Visual Airplane Tracker Runs On Pi

As no doubt is the case with many readers, there is a Raspberry Pi running in the yard near where this is being written that tracks airplanes, listening into the ADS-B radio broadcasts that they send and uploading the data to a sharing service. This device lacks the blinky LEDs that hacking custom states it should have, though. This project from [xy72y5e] would be a great way to deal with that problem: they used a Unicorn hat to create a simple map of local airplanes. This shows the location and track of aircraft in the area on the 8 by 8 RGB LED matrix of the Unicorn Hat.

While the device here maps local planes from their radio fixes, the code that [xy72y5e] published works with the api of ADSBExchange, a site that shares flight data. This means that the map can be easily set to show air traffic at a different location to the device itself. And it wouldn’t be that difficult to alter this to show the locally detected planes, as [xy72y5e] has published the full Python code that creates the map. This would also go well with some of the other airplane tracking hacks that we’ve seen recently, such as the planespotter destination tracker or tracking airplanes by radar reflections

[Via Reddit]

Controlling Non-Googley Devices With Google Assistant

In the near future of the Smart Home, you will be able to control anything with your voice. Assuming that everything supports the Smart Home standard you chose, that is. If you have a device that supports one of the other standards, you’ll end up uselessly yelling at it. Unless you use gBridge. As the name suggests, gBridge is a bridge between Google Assistant devices and the rest of the smart home universe. It’s an open source project that is available as a Docker image can be run on a low power device in the home, or on a hosted service.

Fundamentally, gBridge is a Google Assistant to MQTT translator. Message Queuing Telemetry Transport (MQTT) is the messaging protocol that many smart home devices use, as it runs over TCP and doesn’t take much power to implement. We’ve covered how to bash around in MQTT and do much of this yourself here, but gBridge looks to be somewhat easier to use. It’s just come out of beta test, and it looks like it might be a good way to get into Smart Home hacking.

There are, of course, plenty of other ways of doing this, such as IFFFT, but [Peter Kappelt], the brains behind gBridge, claims that it is more flexible, as it offers support for the whole Google Assistant vocabulary, so you can do things like put devices into groups or do more conditional control (such as if the light level in the hallway rises above a certain amount, start recording with a camera) with non-Google devices. [Peter] is also looking to run gBridge as a hosted service, where he does the behind the scenes stuff to update servers, etc, in return for a small fee.

Continue reading “Controlling Non-Googley Devices With Google Assistant”

UV Glow Clock Tells The Time Glowingly

Reddit user [TuckerPi] wanted to make something to thank his father for helping him get through his engineering degrees. He hit it out of the park with this awesome glowing clock. The clock uses a strip of UV glow tape, which is rotated by a small stepper motor. On one side a UV LED is moved up and down by a second motor to make the tape glow underneath it. A Raspberry Pi drives the whole system, writing the time on the tape and rotating it to face outwards. Once a minute the clock rewrites the time on the rubber.

This is a lovely build that shows what [TuckerPI] learned in college, as he built most of the mechanism himself, cutting his own metal gears and parts and making a nice, simple case from African mahogany. He also shows his mistakes, such as his first attempt to build the glowing mechanism from silicon rubber mixed with UV powder. Although it worked initially, he found that the UV powder fell out of the rubber after a short while, so he replaced it with UV glow tape.

[TuckerPi] hasn’t published the full schematics of the device, but there is a lot of detail in the Imgur photos of the build and in the Reddit thread where he discussed the build. Kudos to him for finding an interesting and unique way to thank his father for his help.

Continue reading “UV Glow Clock Tells The Time Glowingly”

The Jookbox Is A Post-Modern Jukebox

The family of [Chris Patty] decided that their holiday gifts would have to be handmade. So, he decided to make something new for his father: a jukebox with a twist. Instead of a touchscreen or web interface, his jukebox uses swipe cards. To play a track, you find the card for the song you want to hear, swipe it, and the jukebox plays the requested track. The whole thing is built into a wooden box that hides its digital nature, which is built using a Raspberry Pi and a credit card stripe reader.

Continue reading “The Jookbox Is A Post-Modern Jukebox”

Raspberry Pi Raccoon-proof Cat Feeder

Feeding things in the outside world is difficult, especially when there are clever creatures like raccoons out there that will break in and steal everything given half a chance. [_ah6] wanted to build a feeder for feral cats that would dispense food, but without encouraging the local raccoons. So, they built a feeder that included a webcam that could see who was waiting for dinner, and dispense food remotely without spooking the cat.

The feeder is built around a modified cereal dispenser that is connected to a Raspberry Pi. This is also connected to a webcam and an IR light source. The camera view can be checked through a web browser, and the feeding can be triggered from a voice assistant. Cats are creatures of routine, so [_ah6] feeds them twice a day and the cats quickly figured out the routine. The feeder only dispenses small amounts of food, and the heavyweight construction of the feeder means that the local raccoons can’t get into the stored food. [_ah6] had originally planned to use a solar power source, but that remains a project for another day.

We’ve come a long way, but cat-facial recognition was en vogue eight years ago for guarding the cat door — keeping the dead mice out rather than the racoons.

Via [reddit]