Neat Odroid & GlusterFS Build Stashes Data, Sips Power

Most of us accumulate stuff, like drawers full of old cables and hard drives full of data. Reddit user [BaxterPad] doesn’t worry about such things though, as he built an impressive Network Attached Storage (NAS) system that can hold over 200TB of data. That’s impressive enough, but the real artistry is in how he did this. He built this system using ODroid HC2 single board computers running GlusterFS, combining great redundancy with low power usage.

Continue reading “Neat Odroid & GlusterFS Build Stashes Data, Sips Power”

Japanese Fire-Fighting Dragon Rides Water Jets

If you are building a robot to fight fires, why not use the water that you are fighting fires with to propel your robot? That seems to be the idea behind the Dragon Fire Fighting robot built by [Professor Satoshi Tadokoro], and his team at Tadohoku University. Their dragon robot is raised by the same directed jets of water that are used to stop the fire.

The three-meter robot also uses these jets of water to steer, moving the dragon’s head by firing water jets at angles. I’m not sure how practical it really is, though: the jets that the robot uses to steer could do as much damage as the fire itself if it wasn’t used carefully. The idea is to attach it to the end of a ladder or crane used by firefighters, so it can explore a building on fire without anyone having to step inside.

The robot was built as part of the Tough Robotics Challenge, a program that is looking to build robots that can help in disasters. Japan is one of the most disaster-prone places on the planet, thanks to earthquakes, nuclear meltdowns, and Godzilla attacks, so the program is looking to build robots that can help out. Some of the concepts they are looking at include cyborg animals, a listening drone that can help find survivors after a disaster using a sensitive microphone array and a serpentine robot that can map pipes and underground structures.

[Via TechXplore and Qes]

 

Continue reading “Japanese Fire-Fighting Dragon Rides Water Jets”

Battleships Over BGP

The Border Gateway Protocol (BGP) is one of the foundations of the internet. It’s how the big routers that shift data around the Internet talk to each other, passing info on where they can send data to. It’s a simple protocol, with each router sending text messages that advertise the routes that they carry. The administrators of these routers create communities, each with an individual code, and this information is passed between routers. Most top-level ISPs don’t spread this data far, but [Ben Cox] realized that his ISP did. and that he could use this as an interesting way to transmit data over the Internet. What data to send? He decided to play battleships.

Continue reading “Battleships Over BGP”

Spanning The Tree : Dr Radia Perlman & Untangling Networks

As computer networks get bigger, it becomes increasingly hard to keep track of the flow of data over this network. How do you route data, making sure that the data is spread to all parts of the network? You use an algorithm called the spanning tree protocol — just one of the contributions to computer science of a remarkable engineer, Dr. Radia Perlman. But before she created this fundamental Internet protocol, she also worked on LOGO, the first programming language for children, creating a dialect for toddlers.

Continue reading “Spanning The Tree : Dr Radia Perlman & Untangling Networks”

Lucky Cat POV Display Ditches the Waving and Windmills Out of Control

If you’ve been in a Japanese restaurant, you’ve probably seen a maneki-neko, the lucky cat charm, where a cat welcomes you with a beckoning arm. It’s considered to bring good luck, but we’re not sure if [Martin Fitzpatrick] is pushing his luck with this Lucky Cat POV display. He hacked one of the figurines so the arm forms a persistence of vision (POV) display, where blinking LEDs on the paw create a dot-matrix style display.

Inside the hapless neko is a Wemos D1, motor driver, and a few other components that turn the cat into a working display. The five LEDs he attached to the paw are wide enough to display 5×7 characters. The tricky part in the mechanical design is getting signals from a stationary base to a spinning arm(ature). In this case it was easily solved with a 6-wire slip ring from Adafruit. [Martin] revs the lucky cat up using a brushed DC motor and a couple of gears.

The ESP8266 is running MicroPython — the combination should make this a snap to hook into any web service API you want to display your own messages. Right now the arm doesn’t have positional awareness so the message isn’t locked in a single position like it would be if a hall effect sensor was used. But [Martin] says there’s plenty of room left inside the cat and a future upgrade could include stashing the batteries inside for a cordless, all-in-one build. If he takes that on it’s a perfect time to add some type of shaft encoding as well.

Check the Lucky Cat showing off in the clip after the break.

Continue reading “Lucky Cat POV Display Ditches the Waving and Windmills Out of Control”

Sophie Wilson: ARM and How Making Things Simpler Made Them Faster & More Efficient

Sophie Wilson is one of the leading lights of modern CPU design. In the 1980s, she and colleague Steve Furber designed the ARM architecture, a new approach to CPU design that made mobile computing possible. They did this by realizing that you could do more, and quicker, with less. If you’ve use a Raspberry Pi, or any of the myriad of embedded devices that run on ARM chips, you’ve enjoyed the fruits of their labor.

It all began for Sophie Wilson with an electric lighter and a slot machine (or fruit machine, as they are called in the UK) in 1978. An aspiring thief had figured out that if you sparked an electric lighter next to the machine, the resulting wideband electromagnetic pulse could trigger the payout circuit. Electronics designer Hermann Hauser had been tasked with fixing the problem, and he turned to Wilson, a student working at his company.

Wilson quickly figured that if you added a small wideband radio receiver to detect the pulse, you could suppress the false payout, foiling the thief. Impressed with this innovation, Hauser challenged Wilson to build a computer over the summer holidays, based in part on a design for an automated cow feeder that Wilson had created at university. Wilson created this prototype computer that looked more like a hand-wired calculator than a modern computer, but the design became the basis for the Acorn System 1, the first computer that Hauser’s new company Acorn Computers launched in 1979. Continue reading “Sophie Wilson: ARM and How Making Things Simpler Made Them Faster & More Efficient”

Alexa, Attack Intruders

If our doom at the hands of our robot overlords is coming, I for one welcome the chance to get a preview of how they might go about it. That’s the idea behind Project Icarus, an Alexa-enabled face-tracking Nerf turret. Designed by [Nick Engmann],  this impressive (or terrifying) project is built around a Nerf Vulcan, a foam dart firing machine gun mounted on a panning turret that is hidden behind a drop-down cabinet door. This is connected to a Pi Zero equipped with a Pi camera. The Zero is running OpenCV and Google Firebase, which connects it with Amazon’s Alexa service.

It works like this: you say “Alexa, open Project Icarus”. Through the Alexa skill that [Nick] created, this connects to the Pi and starts the system. If you then say “Alexa, activate alpha”, it triggers a relay to open the cabinet and the Nerf gun starts panning around, while the camera mounted on the top of it searches for faces. The command “Alexa, activate beta” triggers the Nerf to open fire.

Continue reading “Alexa, Attack Intruders”