A Rifle, Handmade Circa 1700

rifle

Today, rifles are made with exacting precision and very complex machine tools for milling, grinding, and boring out the barrel. Long rifles have been around much longer than these modern machine tools, so how exactly did gunsmiths create such exacting works of art in an age before Bridgeport mills and Sherline lathes?

In an amazing 10-part video series, [Wallace Gustler] of colonial Williamsburg takes us through the process of crafting a flintlock long rifle circa 1700. All the videos are embedded after the break, by the way.

The first step of making the rifle is fabricating the barrel. This is made from a bar of wrought iron, hammered into a tube around a mandrel, and welded together in the forge. With the help of a primitive hand-cranked lathe, the barrel is then bored out and eventually rifled with the help of a cutting tool that is constructed more out of hickory than tool steel.

With the barrel complete, [Wallace] moves on to the lock. Again, everything is fabricated by hand nearly entirely from materials that could be sourced locally at a new world colony in 1700. Spring steel is one of the exceptions of to this desire for local materials, along with a few bits of brass that were recycled from imported sources.

A gunsmith must be a master of metalwork, of course, but he must also be an excellent wood-carver. The stock of the gun iw made from a huge sugar maple board, carefully carved to accept the barrel, lock, and the custom cast brass pieces.

The result is a masterfully crafted flintlock rifle, capable of picking off a target at a few hundred yards. [Wallace Gustler] manufactured nearly everything in this gun by hand, an impressive display of skill for a master, but an inspiration to anyone who would want to work with their hands.

Continue reading “A Rifle, Handmade Circa 1700”

DIP Switch Adjusted Voltage Regulator

dip-settable-variable-supply

It couldn’t be simpler but you have to admit that a small adjustable portable power supply like this one will be really handy.

The main part of the PSU is an LM317 linear voltage regulator which we’re already familiar with. The output voltage is adjustable based on a voltage divider between two of the pins. The set of eight DIP switches allows you to tweak that voltage divider. Switch number one connects the 9-volt battery connector to the regulator, serving as a power switch. Each of the other seven switches adjusts the output voltage by 1.5 volts. The output of the regulator connects to your target device using alligator clips which are not in frame above.

[Jason] says he takes this with him when thrift store hunting for cheap electronics. It can mimic most combinations of Alkaline cells letting you power up electronic toys to ensure they work. But we would find it equally useful for getting that early prototype away from the bench supply for testing before finalizing a dedicated portable supply.

Continue reading “DIP Switch Adjusted Voltage Regulator”

Sentrifying A Nerf Gun

vulcan

[Brittliv] made the mistake of getting her friends into Nerf weaponry, and so began the race to mutually secured destruction via foam darts. She may have the upper hand in this war, because her Nerf Vulcan sentry gun is both incredibly powerful and is able to be operated autonomously with a webcam featuring a friend or foe identification system.

The azimuth and elevation mount for the gun is made out of plywood, with each axis controlled by a single servo attached to an Arduino. Of course a stock Nerf gun would be fairly boring, so [BrittLiv] increased both the voltage going to the gun’s motor and the strength of the gun by replacing a 2kg spring with a 5kg spring.

Targets are tracked with a webcam using Processing and a bit of code from Project Sentry Gun. One interesting feature is a friend or foe tracking system; if the gun sees someone wearing a t-shirt with the Instructables logo, the target is identified as a friend and is not brutally mowed down with plastic darts.

Continue reading “Sentrifying A Nerf Gun”

Perfect Wall-mounted Tablet Integration

There’s a building downtown built about ten years ago that has tablet-sized LCD screens next to the entrance of each large meeting room. They’re never on and we always wonder why they didn’t just use one of those things that holds a sheet of printer paper to label what’s happening in the meeting space? Now this is a similar idea but with much better execution. Instead of just displaying data the in-wall tablet mount makes your room interactive.

[Tim’s] been working on it for a couple of years. He started out trying to house an iPod Touch behind a junction box cover plate. There are some pictures of that at the top of his build album. That didn’t quite take so keep scrolling to see the path to the finished product shown above. He cut a hole in the drywall and figured out how to mount a tablet dock that includes inductive charging. It holds the tablet in place with the small ledge and a few magnets, keeping its battery charged without a need for wires. Once tested he mudded, sanded, textured, and painted for a perfect finished product.

Twenty Two Servos And An Awesome Clock

servo

We can never get enough interesting clock builds, and [ebrithil]’s servo clock (Deutsche, Google translation) is up there with the best of them. There’s twenty-two servos in this clock, moving time forward with the mechanistic precision only an Arduino project can.

The digits in [ebrithil]’s clock are constructed like seven-segment displays, only instead of lighting up LEDs, servos turn small bits of paper that are light on one side and dark on the other. Turing the servo 180 degrees changes each segment from one shade to the other, making for an electromechanical seven-segment display.

The servos are controlled by an Arduino Mega connected to a DS1302 real-time clock. One problem [ebrithil] had with this project is having the segments rotate slightly every time someone turned on a light attached to the same circuit. He solved this problem by running the circuit off a perpetually charging cell phone battery, allowing him to take this clock on the go without losing time.

Continue reading “Twenty Two Servos And An Awesome Clock”

Hand Soldering BGA Wafer Chips

And here we’ve been complaining about Flat Pack No-Lead chips when this guy is prototyping with Ball Grid Array in a Wafer-Level Chip Scale Package (WLCSP). Haven’t heard that acronym before? Neither had we. It means you get the silicon wafer without a plastic housing in order to save space in your design. Want to use that on a breadboard. You’re crazy!

Eh, that’s just a knee jerk reaction. The wafer-level isn’t that unorthodox as far as manufacturing goes. It’s something like chip on board electronics which have that black blob of epoxy sealing them after the connections are made. This image shows those connections which use magnet wire on a DIP breakout board. [Jason] used epoxy to glue the wafer down before grabbing his iron. It took 90 minutes to solder the nine connections, but his second attempt cut that process down to just 20. After a round of testing he used more epoxy to completely encase the chip and wires.

It works for parts with low pin-counts. But add one row/column and you’re talking about making sixteen perfect connections instead of just nine.

Deep Woods Cabin; One Man, His Tools, And A Camera On A Tripod

We remember watching Alone in the Woods years ago on Public Television. It’s a story of a self-sufficient man named [Dick Proenneke] who loved the outdoors and decided to live alone in the Alaskan wilderness. It’s a remarkable story made more so by the film footage he made to document his experience. That teaser doesn’t do it justice, so check out the web page summaries as well and consider picking up a copy of the films for yourself.

The films include hiking, hunting, observing nature, and building this sweet pad which even [Steve] would be proud of. The first summer he left his native Iowa and scouted for cabin locations near Twin Lakes, Alaska. After finding a suitable location he felled enough trees to build the entire 11′ by 14′ structure and headed back home for the winter.

The next summer he packed in the tools seen above, and got to work. His build includes a stone fire-place as well as a door, windows, and a moss-covered roof. He did return to the continental US one more time, but ended up going back to Alaska to spend another 30 years in the cabin.

Continue reading “Deep Woods Cabin; One Man, His Tools, And A Camera On A Tripod”