Hand Soldering BGA Wafer Chips

And here we’ve been complaining about Flat Pack No-Lead chips when this guy is prototyping with Ball Grid Array in a Wafer-Level Chip Scale Package (WLCSP). Haven’t heard that acronym before? Neither had we. It means you get the silicon wafer without a plastic housing in order to save space in your design. Want to use that on a breadboard. You’re crazy!

Eh, that’s just a knee jerk reaction. The wafer-level isn’t that unorthodox as far as manufacturing goes. It’s something like chip on board electronics which have that black blob of epoxy sealing them after the connections are made. This image shows those connections which use magnet wire on a DIP breakout board. [Jason] used epoxy to glue the wafer down before grabbing his iron. It took 90 minutes to solder the nine connections, but his second attempt cut that process down to just 20. After a round of testing he used more epoxy to completely encase the chip and wires.

It works for parts with low pin-counts. But add one row/column and you’re talking about making sixteen perfect connections instead of just nine.

Deep Woods Cabin; One Man, His Tools, And A Camera On A Tripod

We remember watching Alone in the Woods years ago on Public Television. It’s a story of a self-sufficient man named [Dick Proenneke] who loved the outdoors and decided to live alone in the Alaskan wilderness. It’s a remarkable story made more so by the film footage he made to document his experience. That teaser doesn’t do it justice, so check out the web page summaries as well and consider picking up a copy of the films for yourself.

The films include hiking, hunting, observing nature, and building this sweet pad which even [Steve] would be proud of. The first summer he left his native Iowa and scouted for cabin locations near Twin Lakes, Alaska. After finding a suitable location he felled enough trees to build the entire 11′ by 14′ structure and headed back home for the winter.

The next summer he packed in the tools seen above, and got to work. His build includes a stone fire-place as well as a door, windows, and a moss-covered roof. He did return to the continental US one more time, but ended up going back to Alaska to spend another 30 years in the cabin.

Continue reading “Deep Woods Cabin; One Man, His Tools, And A Camera On A Tripod”

The 14th Game For The Nintendo Power Pad

[youtube=http://www.youtube.com/watch?v=6x23TWrInpI&w=580]

Released 25 years ago, the Nintendo Power Pad, a plastic mat that plugged into an NES, saw very limited success despite its prevalence in basements and attics. In total, only six games for the Power Pad were released in North America, and only 13 worldwide. The guys over at cyborgDino thought they should celebrate the sliver anniversary of the Power Pad by creating its 14th game, using an Arduino and a bit of playing around in Unity 3D.

The first order of business was to read the button inputs on the Power Pad. Like all NES peripherals, the Power Pad stores the state of its buttons in a shift register that can be easily read out with an Arduino. With a bit of help from the UnoJoy library, it was a relatively simple matter to make the Power Pad work as intended.

The video game cyborgDino created is called Axis. It’s a bit like a cross between Pong and a tower defense game; plant your feet on the right buttons, and a shield pops up, protecting your square in the middle of the screen from bouncing balls. It’s the 14th game ever created for the Power Pad, so that’s got to count for something.

Video of the game below.

Continue reading “The 14th Game For The Nintendo Power Pad”

Super-precise Light Painting From A Delta Robot

delta-robot-light-painting

The points of those geometric shapes line up perfectly thanks to the delta robot arm controlling the light source. The source is a simple LED that can be switched on and off as it moves. A camera is set up in a dark room to keep the shutter open while the arm moves. We’re assuming that all of the light for the stationary objects in this image comes from the LED as well.

[Sick Sad] built the delta bot for just for this purpose. Check out the video below to see, and perhaps more importantly hear, the thing in motion. Seriously, the whine of the stepper motors is pretty awesome on this one.

The delta concept uses a central head on three arms angled down from above. If the LED is also pointed down it won’t light up the hardware and that’s why it doesn’t show up in the image. We’ve seen similar accuracy when using this style of machine for 3D printing. But if you don’t want to build a complicated machine you can try this out with a simple string plotter.

Continue reading “Super-precise Light Painting From A Delta Robot”

Seeing Plant Health In Infrared

aerial

Since the 70s, NASA, NOAA, and the USGS have been operating a series of satellites designed to look at vegetation health around the world. These satellites, going under the name Landsat, use specialized camera filters that look at light reflecting off chlorophyll to gauge the health of forests, plains, oceans, and even farms. It’s all very interesting technology, and a few very cool people want to put one of these near infrared cameras in the hands of everyone.

The basic idea behind gauging the health of plants from orbit, or the Normalized Difference Vegetation Index, is actually pretty simple: absorb red and blue light (thus our verdant forests), and reflect nearly all infrared light. By removing the IR filter from a digital camera and adding a ‘superblue’ filter, the NDVI can be calculated with just a little bit of image processing.

The folks behind this have put up a Kickstarter with rewards including a modified webcam, a custom point and shoot camera, and a very low-cost source of one of these superblue filters. Just the thing to see how your garden grows or how efficiently you can kill a houseplant.

Raspberry Pi, Now In A Mini-ITX Form Factor

Shown above is a fairly simple Raspberry Pi setup. There’s the Raspi itself, a 2.5″ hard drive, a USB hub, GPIO expansion, and wireless and Bluetooth adapters. Throw in the power supplies for all these devices, and you’ve got a real mess on your hands. There is a solution to this problem of a Gordian knot of USB and power cables: the Fairywren, a board that turns your Raspberry Pi into a Mini-ITX computer.

The basic idea behind the Fairywren is to take the basic outline of a Mini-ITX motherboard and add goodies like a real-time clock serial port, and USB hub while providing a secure mounting place for a Raspberry Pi. It turns a Raspberry Pi into a proper computer, with all the ports in the rear, and is compatible with a whole slew of Mini-ITX cases.

At £40, the Fairywren isn’t exactly cheap. In fact, it’s more expensive than the Raspberry Pi itself. That being said, you do get a whole lot of hardware for the price, and if you already have a small Mini-ITX case lying around, it may be just the thing to clean up the mess on your electronics bench.

Family Pulls Together To Build Dad’s Casket

build-your-own-casket

In these modern times we don’t often hear about families building their own caskets. But this project log documenting the deceased’s brother and sons fabricating a top of the line casket is really heartwarming. You may be thinking that they wouldn’t be able to include all the features you’d find on a commercially produced model. However, we remember seeing an episode of How It’s Made about caskets and there’s not much more than carpentry and simple upholstery involved.

The build starts with a plywood box lined with thin wooden ribs for added strength. The group then wrapped it with thin strips of dimensional lumber (maybe flooring?) which look great after a coat of stain. We’re not sure where the metal brackets for the two side rails came from. If you recognize them we’d love to hear about it in the comments.

The bottom line here is that for families used to working with their hands this is a great tribute and a way to commune with each other after the recent loss.

[via Reddit]