Laptop To All-in-one PC Conversion

laptop2allinone

You probably have an old laptop shoved into a far, dark corner of your closet, gathering dust as it sits there alone and unwanted. Show it some love like [Oakkar7] and hack it into a desktop all-in-one PC. He had his work cut out for him, though: dead motherboard, busted case, worthless battery. [Oakkar7] starts by taking the case apart and removing the LCD screen. He removes the motherboard to discover two toasted capacitors in need of replacement. A short solder job later and the computer springs to life.

[Oakkar7] needs the LCD to face outwards while sitting against the rest of the laptop. The connecting cable doesn’t reach, so he carefully removes it, and flips it around to get the extra length needed. The final step is to fashion some aluminum support bars that attach to the bottom of the case, which mount onto another aluminum stand holding everything upright. At this point [Oakkar7] has tossed the battery, the keyboard, both the CD and floppy drive (yes it’s that old), and moved the speakers into the battery’s former home. For the finishing touch, a USB hub provides connections for the new keyboard, mouse and a Wifi dongle.

[Oakkar7] shared his project with us after reading [Elad’s] ground control station laptop conversion. Maybe these two projects can convince you to save a neglected laptop.

RGB Infinity Mirror

If you’ve been waiting for a more detailed guide before you set off to work on your own Infinity Mirror, [Ben]’s write-up is perhaps the most approachable one you will find. This build uses a set of four potentiometers to control an analog RGB LED strip (these lights are not individually addressable: but that makes coding simpler). [Ben] powers everything from a 12V 5A DC adapter, which is more than enough to run the 12V RGB strip along with the Arduino.

The mirror has two different ‘modes:’ individual channel color control and color-fade. In the first mode, three pots drive the RGB channels respectively. The color-fade mode has a mind of its own, sliding between all possible colors; you can spin the fourth potentiometer to control the speed of the transition.

The video below better illustrates the different modes. We definitely recommend [Ben’s] excellent guide as an ideal first project for anyone who has yet to take the plunge beyond simple microcontroller exercises. Check out Freeside Atlanta’s Infinity Mirror prototype for more inspiration.

Continue reading “RGB Infinity Mirror”

Screaming Fast RC Hovercraft

Of all the homemade RC Hovercraft floating around out there, this build is not only one of the better looking: it’s also unexpectedly quick. [ScratchBuiltAircraft] sourced foam board from the local dollar store to construct the hovercraft’s body and a heavy-duty garbage bag with a hole cut in the center for the skirt. Air reaches the skirt area from the hovercraft’s EDF (Electric Duct Fan — the big one on the back) which pumps the air through a rectangular hole in the base.

A servo mounted behind the fan controls the rudders, while the rest of the electronics and the battery are cleanly tucked away beneath foam body pieces. We’re not sure what kind of top speed the Turnigy motor provides, but it’s probably impressive assuming it can keep from flipping over. Watch it blast off with a bit too much lift in the video below.

For something a bit slower, there’s always the solar powered hovercraft from earlier this summer.

Continue reading “Screaming Fast RC Hovercraft”

Another Arduino Clone Is The Last Thing The World Needs

duino

One might think the last thing the world needs is for The Great Old Ones to rise from their near-death sleep deep in the Pacific ocean, and begin again their reign over Earth.  Actually, the last thing the world needs is another Arduino clone. Here’s this one. Fittingly, it’s called the Ktuluino.

Actually, this isn’t yet another attempt to build an Arduino clone that adds nothing to existing designs; it’s just [Jeff]’s attempt at PCB design. He needed something to practice on, so why not something that ends in -uino?

The board is just about as simple as Arduinos come – an ATMega328P is the brains of the outfit and also the most expensive component, closely followed by either the power jack or the header pins. As an exercise in PCB design, we’ll give this a thumbs up, but this could also be used for an ‘introduction to soldering’ workshop at a hackerspace, or alternatively a coaster.

Retrotechtacular: 6CH Industrial Robot

retrotechtacular-6ch-robot-arm

With this robotic arm demo video from 1975 the future really is now. Think about it, there are entire factories full of the descendants of this technology where the human workers simply feed the beast and fix it when it breaks.

We’re pretty impressed by what’s shown off below. Not because we see something we didn’t know was possible, but because the technology was so advanced nearly forty years ago. Here the arm is laying out a wiring harness on a jig. We wonder if using a single color of wire is going to make it a major pain when they add the connectors?

Obviously the mechanics were solid. Time has brought further advances in precision, reduced costs that make robots available for even small factories (often palletizing products is done by a machine similar to this), and improvements in how tasks are programmed. After all, the ability to print a hard copy of the program as a punch tape isn’t quite cutting edge for this decade.

What does that mean for you? If you look hard enough you might be able to find an older generation robot arm to hack on.

Continue reading “Retrotechtacular: 6CH Industrial Robot”

The JavaScript Of Things

Espruino

There are a ton of people out there that can program in JavaScript, but give them an embedded device, and they’re up the creek without a paddle. Not anymore, that is, thanks to [Gordon]’s wonderful Espruino, a JavaScript interpreter for ARM microcontrollers. Oh, it’s also a very capable dev board that has more than enough power to turn just about any project you can imagine into reality.

On board the Espruino is an ARM Cortex M3 in the form of an STM32 chip, 256kB Flash, 48kB of RAM, and a ton of PWM and ADC pins to go along with 2 SPI ports, 2 I2C ports, and 2 DACs. It’s a very capable piece of hardware, and if you’re looking to build anything, it would be hard to pick a better general purpose dev board.

[Gordon] has put his board up on Kickstarter, and since it’s already been successfully funded, he’ll be releasing the hardware and software sources under an Open Source license. If you’ve ever wanted to run JavaScript on an ARM board, it looks like Espruino is just the ticket.

A Weekend Trip To Verify General Relativity

8 years ago, for the 100th anniversary of the theory of relativity [Tom] decided to test the general theory of relativity.

As he was going to Mt Rainier (5400ft high) with his children for the weekend, he brought in his van 3 cesium clocks while leaving other atomic clocks at his home for comparison. The theory behind the test is that if you’re are at higher altitudes, then your speed (in a galactic coordinate system) is higher than the one you’d have at sea level and therefore time would go “slower” than at lower altitudes.

[Tom] brought 400 pounds of batteries, 200 pounds of clocks and left his car turned on during his 2 days stay in the ‘Paradise Lodge’. He used 120V DC to AC converters and chose to bring 3 cesium clocks to have a triple redundant  setup. When he came back home, he had the good surprise of finding a time difference of 23ns. This is a great application for those rubidium sources you’ve been scavenging.

[Thanks Indyaner via Reddit]