Zink Is Zero Ink — Sort Of

When you think of printing on paper, you probably think of an ink jet or a laser printer. If you happen to think of a thermal printer, we bet you think of something like a receipt printer: fast and monochrome. But in the last few decades, there’s been a family of niche printers designed to print snapshots in color using thermal technology. Some of them are built into cameras and some are about the size of a chunky cell phone battery, but they all rely on a Polaroid-developed technology for doing high-definition color printing known as Zink — a portmanteau of zero ink.

For whatever reason, these printers aren’t a household name even though they’ve been around for a while. Yet, someone must be using them. You can buy printers and paper quite readily and relatively inexpensively. Recently, I saw an HP-branded Zink printer in action, and I wasn’t expecting much. But I was stunned at the picture quality. Sure, it can’t print a very large photo, but for little wallet-size snaps, it did a great job.

The Tech

Polaroid was well known for making photographic paper with color layers used in instant photography. In the 1990s, the company was looking for something new. The Zink paper was the result. The paper has three layers of amorphochromic dyes. Initially, the dye is colorless, but will take on a particular color based on temperature.

The key to understanding the process is that you can control the temperature that will trigger a color change. The top layer of the paper requires high heat to change. The printer uses a very short pulse, so that the top layer will turn yellow, but the heat won’t travel down past that top layer.

The middle layer — magenta — will change at a medium heat level. But to get that heat to the layer, the pulse has to be longer. The top layer, however, doesn’t care because it never gets to the temperature that will cause it to turn yellow.

The bottom layer is cyan. This dye is set to take the lowest temperature of all, but since the bottom heats up slowly, it takes an even longer pulse at the lower temperature. The top two layers, again, don’t matter since they won’t get hot enough to change. A researcher involved in the project likened the process to fried ice cream. You fry the coating at a high temperature for a short time to avoid melting the ice cream. Or you can wait, and the ice cream will melt without affecting the coating.

Continue reading “Zink Is Zero Ink — Sort Of”

Supercon 2024: Killing Mosquitoes With Freaking Drones, And Sonar

Suppose that you want to get rid of a whole lot of mosquitoes with a quadcopter drone by chopping them up in the rotor blades. If you had really good eyesight and pretty amazing piloting skills, you could maybe fly the drone yourself, but honestly this looks like it should be automated. [Alex Toussaint] took us on a tour of how far he has gotten toward that goal in his amazingly broad-ranging 2024 Superconference talk. (Embedded below.)

The end result is an amazing 380-element phased sonar array that allows him to detect the location of mosquitoes in mid-air, identifying them by their particular micro-doppler return signature. It’s an amazing gadget called LeSonar2, that he has open-sourced, and that doubtless has many other applications at the tweak of an algorithm.

Rolling back in time a little bit, the talk starts off with [Alex]’s thoughts about self-guiding drones in general. For obstacle avoidance, you might think of using a camera, but they can be heavy and require a lot of expensive computation. [Alex] favored ultrasonic range finding. But then an array of ultrasonic range finders could locate smaller objects and more precisely than the single ranger that you probably have in mind. This got [Alex] into beamforming and he built an early prototype, which we’ve actually covered in the past. If you’re into this sort of thing, the talk contains a very nice description of the necessary DSP.

[Alex]’s big breakthrough, though, came with shrinking down the ultrasonic receivers. The angular resolution that you can resolve with a beam-forming array is limited by the distance between the microphone elements, and traditional ultrasonic devices like we use in cars are kinda bulky. So here comes a hack: the TDK T3902 MEMS microphones work just fine up into the ultrasound range, even though they’re designed for human hearing. Combining 380 of these in a very tightly packed array, and pushing all of their parallel data into an FPGA for computation, lead to the LeSonar2. Bigger transducers put out ultrasound pulses, the FPGA does some very intense filtering and combining of the output of each microphone, and the resulting 3D range data is sent out over USB.

After a marvelous demo of the device, we get to the end-game application: finding and identifying mosquitoes in mid-air. If you don’t want to kill flies, wasps, bees, or other useful pollinators while eradicating the tiny little bloodsuckers that are the drone’s target, you need to be able to not only locate bugs, but discriminate mosquitoes from the others.

For this, he uses the micro-doppler signatures that the different wing beats of the various insects put out. Wasps have a very wide-band doppler echo – their relatively long and thin wings are moving slower at the roots than at the tips. Flies, on the other hand, have stubbier wings, and emit a tighter echo signal. The mosquito signal is even tighter.

If you told us that you could use sonar to detect mosquitoes at a distance of a few meters, much less locate them and differentiate them from their other insect brethren, we would have thought that it was impossible. But [Alex] and his team are building these devices, and you can even build one yourself if you want. So watch the talk, learn about phased arrays, and start daydreaming about what you would use something like this for.

Continue reading “Supercon 2024: Killing Mosquitoes With Freaking Drones, And Sonar”

High Frequency Food: Better Cutting With Ultrasonics

You’re cutting yourself a single slice of cake. You grab a butter knife out of the drawer, hack off a moist wedge, and munch away to your mouth’s delight. The next day, you’re cutting forty slices of cake for the whole office. You grab a large chef’s knife, warm it with hot water, and cube out the sheet cake without causing too much trauma to the icing. Next week, you’re starting at your cousin’s bakery. You’re supposed to cut a few thousand slices of cake, week in, week out. You suspect your haggardly knifework won’t do.

In the home kitchen, any old knife will do the job when it comes to slicing cakes, pies, and pastries. When it comes to commercial kitchens, though, presentation is everything and perfection is the bare minimum. Thankfully, there’s a better grade of cutting tool out there—and it’s more high tech than you might think.

Continue reading “High Frequency Food: Better Cutting With Ultrasonics”

Checking In On The ISA Wars And Its Impact On CPU Architectures

An Instruction Set Architecture (ISA) defines the software interface through which for example a central processor unit (CPU) is controlled. Unlike early computer systems which didn’t define a standard ISA as such, over time the compatibility and portability benefits of having a standard ISA became obvious. But of course the best part about standards is that there are so many of them, and thus every CPU manufacturer came up with their own.

Throughout the 1980s and 1990s, the number of mainstream ISAs dropped sharply as the computer industry coalesced around a few major ones in each type of application. Intel’s x86 won out on desktop and smaller servers while ARM proclaimed victory in low-power and portable devices, and for Big Iron you always had IBM’s Power ISA. Since we last covered the ISA Wars in 2019, quite a lot of things have changed, including Apple shifting its desktop systems to ARM from x86 with Apple Silicon and finally MIPS experiencing an afterlife in  the form of LoongArch.

Meanwhile, six years after the aforementioned ISA Wars article in which newcomer RISC-V was covered, this ISA seems to have not made the splash some had expected. This raises questions about what we can expect from RISC-V and other ISAs in the future, as well as how relevant having different ISAs is when it comes to aspects like CPU performance and their microarchitecture.

Continue reading “Checking In On The ISA Wars And Its Impact On CPU Architectures”

You Know Pi, But Do You Really Know E?

Pi Day is here! We bet that you know that famous constant to a few decimal points, and you could probably explain what it really means: the ratio of a circle’s circumference to its diameter. But what about the constant e? Sure, you might know it is a transcendental number around 2.72 or so. You probably know it is the base used for natural logarithms. But what does it mean?

The poor number probably needed a better agent. After all, pi is a fun name, easy to remember, with a distinctive Greek letter and lots of pun potential. On the other hand, e is just a letter. Sometimes it is known as Euler’s number, but Leonhard Euler was so prolific that there is also Euler’s constant and a set of Euler numbers, none of which are the same thing. Sometimes, you hear it called Napier’s constant, and it is known that Jacob Bernoulli discovered the number, too. So, even the history of this number is confusing.

But back to math, the number e is the base rate of growth for any continually growing process. That didn’t help? Well, consider that many things grow or decay through growth. For example, a bacteria culture might double every 72 hours. Or a radioactive sample might decay a certain amount per century. Continue reading “You Know Pi, But Do You Really Know E?”

Inexpensive Repairable Laptops, With Apple Style

Despite a general lack of real-world experience, many teenagers are overly confident in their opinions, often to the point of brashness and arrogance. In the late 90s and early 00s I was no different, firmly entrenched in a clichéd belief that Apple computers weren’t worth the silicon they were etched onto—even though I’d never actually used one. Eventually, thanks to a very good friend in college, a bit of Linux knowledge, and Apple’s switch to Intel processors, I finally abandoned this one irrational belief. Now, I maintain an array of Apple laptops for my own personal use that are not only surprisingly repairable and hacker-friendly but also serve as excellent, inexpensive Linux machines.

Of course, I will have ruffled a few feathers suggesting Apple laptops are repairable and inexpensive. This is certainly not true of their phones or their newer computers, but there was a time before 2016 when Apple built some impressively high quality, robust laptops that use standard parts, have removable batteries, and, thanks to Apple dropping support for these older machines in their latest operating systems, can also be found for sale for next to nothing. In a way that’s similar to buying a luxury car that’s only a few years old and letting someone else eat the bulk of the depreciation, a high quality laptop from this era is only one Linux install away from being a usable and relatively powerful machine at an excellent bargain. Continue reading “Inexpensive Repairable Laptops, With Apple Style”

Open Source Hardware, How Open Do You Want It To Be?

In our wider community we are all familiar with the idea of open source software. Many of us run it as our everyday tools, a lot of us release our work under an open source licence, and we have a pretty good idea of the merits of one such document over another. A piece of open source software has all of its code released under a permissive licence that explicitly allows it to be freely reproduced and modified, and though some people with longer beards take it a little too seriously at times and different flavours of open source work under slightly different rules, by and large we’re all happy with that.

When it comes to open hardware though, is it so clear cut?  I’ve had more than one rant from my friends over the years about pieces of hardware which claim to be open-source but aren’t really, that I think this bears some discussion.

Open Source Hardware As It Should Be Done

To explore this, we’ll need to consider a couple of open source hardware projects, and I’ll start close to home with one of my own. My Single 8 home movie cartridge is a 3D printable film cartridge for a defunct format, and I’ve put everything necessary to create one yourself in a GitHub repository under the CERN OHL. If you download the file and load it into OpenSCAD you can quickly create an STL file for your slicer, or fiddle with the code and make an entirely new object. Open source at its most efficient, and everyone’s happy. I’ve even generated STLs ready to go for each of the supported ISO values. Continue reading “Open Source Hardware, How Open Do You Want It To Be?”