SteamDeck connected to a laptop with a USB cable, showing the 'printed-out' document on its screen inside a PDF reader

SteamDeck: Become Printer

Wonderful things happen when we read the documentation. For instance, we’ve all seen a Raspberry Pi work as an Ethernet adapter over USB, or a ESP32-S2 presenting as a storage device. Well, [parkerlreed] has made his Steam Deck work as a USB printer after reading the Linux kernel docs on the USB gadget configuration, and all it took was some C code and a BIOS setting change.

“Wouldn’t it be cool if our USB tablets exposed a fake printer interface and saved the received documents as PDF?” With a SteamDeck, you can do just that – thanks to the g_printer kernel module. The C code is fairly straightforward, and even lets you configure some aspects of the printer device.

Of course, there’s gotta be a cherry on the cake, and [parkerlreed]’s shell script hides an addition that makes your PDF printing experience all that more realistic! Not to spoil it too much – you should watch the video of the script in action, showcasing both the ease of use and the added realism.

Jokes aside, the usefulness of this script is undeniable, and owners of USB-device-capable portable Linux devices will find this script a must-have. It’s seriously cool when someone dives into documentation and pulls out a clever solution to a “wouldn’t it be cool” idea – fundamentally, it is the same mindset that gave us the venerable RTL-SDR. What’s your favourite ‘dig into docs and figure out a clever feature’ hack?

We thank [Myself] for sharing this with us on the Hackaday Discord!

Continue reading “SteamDeck: Become Printer”

Linux Fu: UEFI Booting

Unless your computer is pretty old, it probably uses UEFI (Unified Extensible Firmware Interface) to boot. The idea is that a bootloader picks up files from an EFI partition and uses them to start your operating system. If you use Windows, you get Windows. If you use Linux, there’s a good chance you’ll use Grub which may or may not show you a menu. The problem with Grub is you have to do a lot of configuration to get it to do different things. Granted, distros like Ubuntu have tools that go through and do much of the work for you and if you are satisfied with that, there’s no harm in using Grub to boot and manage multiple operating systems.

An alternative would be rEFInd, which is a nice modern UEFI boot manager. If you are still booting through normal (legacy) BIOS, the installation might be a hassle. But, in general, rEFInd, once installed, just automatically picks up most things, including Windows, Mac, and Linux operating systems and kernels. The biggest reasons you might change the configuration is if you want to hide some things you don’t care about or change the visual theme.

Continue reading “Linux Fu: UEFI Booting”

Linux Fu: Miller The Killer Makes CSV No Pest

Historically, one of the nice things about Unix and Linux is that everything is a file, and files are just sequences of characters. Of course, modern practice is that everything is not a file, and there is a proliferation of files with some imposed structure. However, if you’ve ever worked on old systems where your file access was by the block, you’ll appreciate the Unix-like files. Classic tools like awk, sed, and grep work with this idea. Files are just characters. But this sometimes has its problems. That’s the motivation behind a tool called Miller, and I think it deserves more attention because, for certain tasks, it is a lifesaver.

The Problem

Consider trying to process a comma-delimited file, known as a CSV file. There are a lot of variations to this type of file. Here’s one that defines two “columns.” I’ve deliberately used different line formats as a test, but most often, you get one format for the entire file:

Slot,String 
A,"Hello" 
"B",Howdy 
"C","Hello Hackaday" 
"D","""Madam, I'm Adam,"" he said." 
E 100,With some spaces!
X,"With a comma, or two, even"

Continue reading “Linux Fu: Miller The Killer Makes CSV No Pest”

DietPi Releases 8.12 With Support For The Rockchip RK3588 SoC

This month DietPi released version 8.12 of this SBC-oriented Linux distribution. Most notable is the addition of support for the NanoPi R6S and the Radxa ROCK 5B SBCs. The ROCK 5B features the new flagship Rockchip RK3588 SoC with quad Cortex-A76 and quad Cortex-A55. What makes DietPi interesting as an operating system for not just higher end SBCs but also lower-end SBCs compared to options like Debian, Raspberry Pi OS and Armbian is that it has a strong focus on being the most optimized. This translates in a smaller binary size, lower RAM usage and more optimized performance.

The DietPi setup experience is as straightforward as with the aforementioned options, except that right from the bat you get provided with many more options to tweak. While the out of the box experience and hitting okay on the provided defaults is likely to be already more than satisfactory for most users – with something like the optional graphical interface easy to add – enterprising users can tweak details about the hardware, the filesystem and more.

When we set up DietPi on a Raspberry Pi Zero, it definitely feels like a much more light-weight experience than the current Debian Bullseye-based Raspberry Pi OS. Even though DietPi is also based on Debian, it leaves a lot more RAM and storage space free, which is a definite boon when running on a limited platform like a Raspberry Pi Zero. Whether it’s polite to state in public or not, DietPi definitely rubs in that many standard SBC images are rather pudgy these days.

CoreFreq Gives Peek At CPU Performance Info On Linux

The CPU is the part of the computer that makes everything else tick. While GPUs have increasingly become a key part of overall system performance, we still find ourselves wanting to know how our CPU is doing. CoreFreq is a Linux tool that aims to tell you everything you want to know about your modern 64-bit CPU.

The tool relies on a kernel module, and is coded primarily in C, with some assembly code used to measure performance as accurately as possible. It’s capable of reporting everything from core frequencies to details on hyper-threading and turbo boost operation. Other performance reports include information on instructions per cycle or instructions per second, and of course, all the thermal monitoring data you could ask for. It all runs in the terminal, which helps keep overheads low.

The hardcore among us can build it from source, available on GitHub, though it’s reportedly available in package form, and as a live CD, too. We could imagine data captured from CoreFreq could be used for some fun performance visualizations, too. If you’ve been whipping up your own nifty command-line tools, be sure to drop us a line!

Chumby Gets New Kernel… Soon

If you missed the Chumby, we’re sorry.  They were relatively inexpensive Linux appliances that acted as a clock, Internet radio, and feed reader. The company went belly up, although there was some functionality remaining thanks to one of the founders and now, for a subscription fee, you can still keep your Chumby operating. However, [Doug Brown] bought one with the goal of using it for his own applications. But the 2.6.28 kernel is showing its age. So he decided to push a new kernel on the device.

If you are a Chumby enthusiast, don’t get too excited. The goal isn’t to provide the existing Chumby apps with a new kernel, [Doug] says that’s probably impossible. Instead, he wants a modern booting infrastructure and kernel on the device for his own software.

Continue reading “Chumby Gets New Kernel… Soon”

Getting Root On A Chinese IP Camera

With so many cheap network-connected devices out there being Linux-powered, it’s very tempting to try and hack into them, usually via a serial interface. This was the goal of [Andrzej Szombierski] when he purchased a cheap Chinese IP camera using an XM530 ARM-based SoC to explore and ultimately get root access on. This camera’s firmware provides the usual web interface on its network side, but it also has a UART on its PCB, courtesy of the unpopulated four-pin header.

Merely firing up a serial terminal application and connecting to this UART is not enough to get access, of course. The first obstacle that [Andrzej] struggled with was that U-Boot was configured to not output Linux kernel boot messages. After tackling that issue with some creative hacking, the next challenge was to figure out the root password, using a dump of the firmware image, which led to even more exploration of the firmware and the encoding used for the root password.

Even if some part of these challenges were possibly more accidental than on purpose by the manufacturer, it shows how these SoC-based Linux devices can put up quite a fight. This then leaves the next question, of what to do with such an IP camera after you have gained root access?