Audio On A Shoestring: DIY Your Own Studio-Grade Mic

When it comes to DIY projects, nothing beats the thrill of crafting something that rivals expensive commercial products. In the microphone build video below, [Electronoobs] found himself inspired by DIY Perks earlier efforts. He took on the challenge of building a $20 high-quality microphone—a budget-friendly alternative to models priced at $500. The result: an engaging and educational journey that has it’s moments of triumph, it’s challenges, and of course, opportunities for improvement.

The core of the build lies in the JLI-2555 capsule, identical to those found in premium microphones. The process involves assembling a custom PCB for the amplifier, a selection of high-quality capacitors, and designing lightweight yet shielded wiring to minimize noise. [Electronoobs] also demonstrates the importance of a well-constructed metal mesh enclosure to eliminate interference, borrowing techniques like shaping mesh over a wooden template and insulating wires with ultra-thin enamel copper. While the final build does not quite reach the studio-quality level and looks of the referenced DIY Perks’ build, it is an impressive attempt to watch and learn from.

The project’s key challenge here would be achieving consistent audio quality. The microphone struggled with noise, low volume, and single-channel audio, until [Electronoobs] made smart modifications to the shielded wiring and amplification stages. Despite the hurdles, the build stands as an affordable alternative with significant potential for refinement in future iterations.

Continue reading “Audio On A Shoestring: DIY Your Own Studio-Grade Mic”

Reverse-Engineering The Polynomial Constants In The Pentium’s FPU

Die photo of the Intel Pentium processor with the floating point constant ROM highlighted in red. (Credit: Ken Shirriff)
Die photo of the Intel Pentium processor with the floating point constant ROM highlighted in red. (Credit: Ken Shirriff)

Released in 1993, Intel’s Pentium processor was a marvel of technological progress. Its floating point unit (FPU) was a big improvement over its predecessors that still used the venerable CORDIC algorithm. In a recent blog post [Ken Shirriff] takes an up-close look at the FPU and associated ROMs in the Pentium die that enable its use of polynomials. Even with 3.1 million transistors, the Pentium die is still on a large enough process node that it can be readily analyzed with an optical microscope.

In the blog post, [Ken] shows how you can see the constants in each ROM section, with each bit set as either a transistor (‘1’) or no transistor (‘0’), making read-out very easy. The example looks at the constant of pi, which the Pentium’s FPU has stored as a version with no fewer than 67 significand bits along with its exponent.

Continue reading “Reverse-Engineering The Polynomial Constants In The Pentium’s FPU”

Nottingham Railway departure board in Hackspace

All Aboard The Hack Train: Nottingham’s LED Revival

Hackerspaces are no strangers to repurposing outdated tech, and Nottingham Hackspace happens to own one of those oddities one rarely gets their hands on: a railway departure board. Left idle for over a decade, it was brought back to life by [asjackson]. Originally salvaged around 2012, it remained unused until mid-2024, when [asjackson] decided to reverse-engineer it. The board now cycles between displaying Discord messages and actual train departures from Nottingham Railway Station every few minutes. The full build story can be found in this blog post.

The technical nitty-gritty is fascinating. Each side of the board contains 4,480 LEDs driven as two parallel chains. [asjackson] dove into its guts, decoding circuits, fixing misaligned logic levels, and designing custom circuit boards in KiCAD. The latest version swaps WiFi for a WizNet W5500 ethernet module and even integrates the Arduino Uno R4 directly into the board’s design. Beyond cool tech, the display connects to MQTT, pulling real-time train data and Discord messages via scripts that bridge APIs and custom Arduino code.

This board is a true gem for any hackerspace, even more so now it’s working. It waited for the exact mix of ingredients why hackerspaces exist in the first place: curiosity, persistence, and problem-solving. Nottingham Hackspace is home to a lot more, as we once wrote in this introductory article.If you don’t have room for the real thing, maybe set your sights a bit smaller.

Do you have a statement piece this cool in your hackerspace or your home? Tip us!

Continue reading “All Aboard The Hack Train: Nottingham’s LED Revival”

Repairing A BPS-305 30V Bench Power Supply

When [Tahmid Mahbub] recently reached for his ‘Lavolta’ BPS-305 bench supply, he was dismayed to find that despite it being a 30V, 5A-rated unit, the supply refused to output more than 15V. To be fair, he wasn’t sure that he had ever tried to push it beyond 15V in the years that he had owned it, but it had better live up to its specs. Ergo out came the screwdriver to open the power supply to see what had broken, and hopefully to fix it.

After some more probing around, he discovered that the unit had many more issues, including a highly unstable output voltage and output current measurement was completely wrong. Fortunately this bench power supply turns out to be very much like any number of similar 30V, 5A units, with repair videos and schematics available.

While [Tahmid] doesn’t detail his troubleshooting process, he does mention the culprits: two broken potentiometers (VR104 and VR102). VR104 is a 5 kOhm pot in the output voltage feedback circuit and VR102 (500 Ohm) sets the maximum output current. With no 500 Ohm pot at hand, a 5 kOhm one was combined with a 470 Ohm resistor to still allow for trimming. Also adjusted were the voltage and current trimpots for the front display as they were quite a bit off. Following some testing on the reassembled unit, this power supply is now back in service, for the cost of two potentiometers and a bit of time.

38C3: Lawsuits Are Temporary; Glory Is Forever

One of the blockbuster talks at last year’s Chaos Communications Congress covered how a group of hackers discovered code that allegedly bricked public trains in Poland when they went into service at a competitor’s workshop. This year, the same group is back with tales of success, lawsuits, and appearances in the Polish Parliament. You’re not going to believe this, but it’s hilarious.

The short version of the story is that [Mr. Tick], [q3k], and [Redford] became minor stars in Poland, have caused criminal investigations to begin against the train company, and even made the front page of the New York Times. Newag, the train manufacturer in question has opened several lawsuits against them. The lawsuit alleges the team is infringing on a Newag copyright — by publishing the code that locked the trains, no less! If that’s not enough, Newag goes on to claim that the white hat hackers are defaming the company.

What we found fantastically refreshing was how the three take all of this in stride, as the ridiculous but incredibly inconvenient consequences of daring to tell the truth. Along the way they’ve used their platform to speak out for open-sourcing publicly funded code, and the right to repair — not just for consumers but also for large rail companies. They are truly fighting the good fight here, and it’s inspirational to see that they’re doing so with humor and dignity.

If you missed their initial, more technical, talk last year, go check it out. And if you ever find yourself in their shoes, don’t be afraid to do the right thing. Just get a good lawyer.

A Die-Level Look At The Pentium FDIV Bug

The early 1990s were an interesting time in the PC world, mainly because PCs were entering the zeitgeist for the first time. This was fueled in part by companies like Intel and AMD going head-to-head in the marketplace with massive ad campaigns to build brand recognition; remember “Intel Inside”?

In 1993, Intel was making some headway in that regard. The splashy launch of their new Pentium chip in 1993 was a huge event. Unfortunately an esoteric bug in the floating-point division module came to the public’s attention. [Ken Shirriff]’s excellent account of that kerfuffle goes into great detail about the discovery of the bug. The issue was discovered by [Dr. Thomas R. Nicely] as he searched for prime numbers. It’s a bit of an understatement to say this bug created a mess for Intel. The really interesting stuff is how the so-called FDIV bug, named after the floating-point division instruction affected, was actually executed in silicon.

We won’t presume to explain it better than [Professor Ken] does, but the gist is that floating-point division in the Pentium relied on a lookup table implemented in a programmable logic array on the chip. The bug was caused by five missing table entries, and [Ken] was able to find the corresponding PLA defects on a decapped Pentium. What’s more, his analysis suggests that Intel’s characterization of the bug as a transcription error is a bit misleading; the pattern of the missing entries in the lookup table is more consistent with a mathematical error in the program that generated the table.

The Pentium bug was a big deal at the time, and in some ways a master class on how not to handle a complex technical problem. To be fair, this was the first time something like this had happened on a global scale, so Intel didn’t really have a playbook to go by. [Ken]’s account of the bug and the dustup surrounding it is first-rate, and if you ever wanted to really understand how floating-point math works in silicon, this is one article you won’t want to miss.

close up hands holding lighting pcb

Circuit Secrets: Exploring A $5 Emergency Light

Who would’ve thought a cheap AliExpress emergency light could be packed with such crafty design choices? Found for about $5, this unit uses simple components yet achieves surprisingly sophisticated behaviors. Its self-latching feature and decisive illumination shut-off are just the beginning. A detailed analysis by [BigCliveDotCom] reveals a smart circuit that defies its humble price.

The circuit operates via a capacitive dropper, a cost-effective way to power low-current devices. What stands out, though, is its self-latching behavior. During a power failure, transistors manage to keep the LEDs illuminated until the battery voltage drops below a precise threshold, avoiding the dreaded fade-to-black. Equally clever is the automatic shut-off when the voltage dips too low, sparing the battery from a full drain.

Modifications are possible, too. For regions with 220V+ mains, swapping the dropper capacitor with a 470nF one can reduce heat dissipation. Replacing the discharge resistor (220k) with a higher value improves longevity by running cooler. What remarkable reverse engineering marvels have you come across? Share it in the comments!  After all, it is fun to hack into consumer stuff. Even if it is just a software hack.

Continue reading “Circuit Secrets: Exploring A $5 Emergency Light”