Fault Analysis Of A 120W Anker GaNPrime Charger

Taking a break from his usual prodding at suspicious AliExpress USB chargers, [DiodeGoneWild] recently had a gander at what used to be a good USB charger.

The Anker 737 USB charger prior to its autopsy. (Credit: DiodeGoneWild, YouTube)
The Anker 737 USB charger prior to its autopsy.

Before it went completely dead, the Anker 737 GaNPrime USB charger which a viewer sent him was capable of up to 120 Watts combined across its two USB-C and one USB-A outputs. Naturally the charger’s enclosure couldn’t be opened non-destructively, and it turned out to have (soft) potting compound filling up the voids, making it a treat to diagnose. Suffice it to say that these devices are not designed to be repaired.

With it being an autopsy, the unit got broken down into the individual PCBs, with a short detected that eventually got traced down to an IC marked ‘SW3536’, which is one of the ICs that communicates with the connected USB device to negotiate the voltage. With the one IC having shorted, it appears that it rendered the entire charger into an expensive paperweight.

Since the charger was already in pieces, the rest of the circuit and its ICs were also analyzed. Here the gallium nitride (GaN) part was found in the Navitas GaNFast NV6136A FET with integrated gate driver, along with an Infineon CoolGaN IGI60F1414A1L integrated power stage. Unfortunately all of the cool technology was rendered useless by one component developing a short, even if it made for a fascinating look inside one of these very chonky USB chargers.

Continue reading “Fault Analysis Of A 120W Anker GaNPrime Charger”

The Nightmare Of Jailbreaking A ‘Pay-To-Ride’ Gotcha Ebike

Theoretically bicycle rental services are a great thing, as they give anyone the means to travel around comfortably without immediately having to rent a car, hail a taxi or brave whatever the local public transport options may be. That is until said services go out of business and suddenly thousands of increasingly more proprietary and locked-down e-bikes suddenly are at risk of becoming e-waste. So too with a recent acquisition by [Berm Peak] over at YouTube, featuring a ‘Gotcha’ e-bike by Bolt Mobility, which went AWOL back in 2022, leaving behind thousands of these e-bikes.

So how hard could it be to take one of these proprietary e-bikes and turn it into a run-off-the-mill e-bike for daily use? As it turns out, very hard. While getting the (36V) battery released and recharged was easy enough, the challenge came with the rest of the electronics, with a veritable explosion of wiring, the Tongsheng controller module and the ‘Gotcha’ computer module that locks it all down. While one could rip this all out and replace it, that would make the cost-effectiveness of getting one of these go down the drain.

Sadly, reverse-engineering the existing system proved to be too much of a hassle, so a new controller was installed along with a bunch of hacks to make the lights and new controller work. Still, for $75 for the bike, installing new electronics may be worth it, assuming you can find replacement parts and got some spare hours (or weeks) to spend on rebuilding it. The bike in the video costed less than $200 in total with new parts, albeit with the cheapest controller, but maybe jailbreaking the original controller could knock that down.

Continue reading “The Nightmare Of Jailbreaking A ‘Pay-To-Ride’ Gotcha Ebike”

Exposed inner copper on multilayer PCB. (Credit: mikeselectricstuff, YouTube)

LACED: Peeling Back PCB Layers With Chemical Etching And A Laser

Once a printed circuit board (PCB) has been assembled it’s rather hard to look inside of it, which can be problematic when you have e.g. a multilayer PCB of an (old) system that you really would like to dissect to take a look at the copper layers and other details that may be hidden inside, such as Easter eggs on inner layers. [Lorentio Brodeso]’s ‘LACED’ project offers one such method, using both chemical etching and a 5 Watt diode engraving laser to remove the soldermask, copper and FR4 fiberglass layers.

This project uses sodium hydroxide (NaOH) to dissolve the solder mask, followed by hydrogen chloride (HCl) and hydrogen peroxide (H2O2) to dissolve the copper in each layer. The engraving laser is used for the removing of the FR4 material. Despite the ‘LACED’ acronym standing for Laser-Controlled Etching and Delayering, the chemical method(s) and laser steps are performed independently from each other.

This makes it in a way a variation on the more traditional CNC-based method, as demonstrated by [mikeselectricstuff] (as shown in the top image) back in 2016, alongside the detailed setup video of how a multi-layer PCB was peeled back with enough resolution to make out each successive copper and fiberglass layer.

Continue reading “LACED: Peeling Back PCB Layers With Chemical Etching And A Laser”

Dollar bill validator

Reading The Color Of Money

Ever wondered what happens when you insert a bill into a vending machine? [Janne] is back with his latest project: reverse engineering a banknote validator. Curious about how these common devices work, he searched for information but found few resources explaining their operation.

To learn more, [Janne] explored the security features that protect banknotes from counterfeiting. These can include microprinting, UV and IR inks, holograms, color-shifting coatings, watermarks, magnetic stripes, and specialty paper. These features not only deter fraud but also enable validators to quickly verify a bill’s authenticity.

Continue reading “Reading The Color Of Money”

The Apple II MouseCard (Credit: AppleLogic.org)

The Apple II MouseCard IRQ Is Synced To Vertical Blanking After All

Recently [Colin Leroy-Mira] found himself slipping into a bit of a rabbit hole while investigating why only under Apple II MAME emulation there was a lot of flickering when using the (emulated) Apple II MouseCard. This issue could not be reproduced on real (PAL or NTSC) hardware. The answer all comes down to how the card synchronizes with the system’s vertical blanking (VBL) while drawing to the screen.

The Apple II MouseCard is one of the many peripheral cards produced for the system, originally bundled with a version of MacPaint for the Apple II. While not a super popular card at the time, it nevertheless got used by other software despite this Apple system still being based around a command line interface.

According to the card’s documentation the interrupt call (IRQ) can be set to 50 or 60 Hz to match the local standard. Confusingly, certain knowledgeable people told him that the card could not be synced to the VBL as it had no knowledge of this. As covered in the article and associated MAME issue ticket, it turns out that the card is very much synced with the VBL exactly as described in The Friendly Manual, with the card’s firmware being run by the system’s CPU, which informs the card of synchronization events.

The 386's main register bank, at the bottom of the datapath. The numbers show how many bits of the register can be accessed. (Credit: Ken Shirriff)

The Convoluted Way Intel’s 386 Implemented Its Registers

The fact that modern-day x86 processors still pretty much support the same operating systems and software as their ancestors did is quite a feat. Much of this effort had already been accomplished with the release of the 80386 (later 386) CPU in 1985, which was not only the first 32-bit x86 CPU, but was also backwards compatible with 8- and 16-bit software dating back to the 1970s. Making this work transparently was anything but straightforward, as [Ken Shirriff]’s recent analysis of the 80386’s main register file shows.

Labelled Intel 80386 die shot. (Credit: Ken Shirriff)
Labelled Intel 80386 die shot. (Credit: Ken Shirriff)

Using die shots of the 386’s registers and surrounding silicon, it’s possible to piece together how backwards compatibility was implemented. The storage cells of the registers are implemented using static memory (SRAM) as is typical, with much of the register file triple-ported (two read, one write).

Most interestingly is the presence of different circuits (6) to support accessing the register file for 8-, 16- or 32-bit writes and reads. The ‘shuffle’ network as [Ken] calls it is responsible for handling these distinct writes and reads, which also leads to the finding that the bottom 16 bits in the registers are actually interleaved to make this process work smoother.

Fortunately for Intel (and AMD) engineers, this feat wouldn’t have to be repeated again with the arrival of AMD64 and x86_64 many years later, when the 386’s mere 275,000 transistors on a 1 µm process would already be ancient history.

Want to dive even deeper in to the 386? This isn’t the first time [Ken] has looked at the iconic chip.

Enigma buttons

Modernizing An Enigma Machine

This project by [Miro] is awesome, not only did he build a replica Enigma machine using modern technologies, but after completing it, he went back and revised several components to make it more usable. We’ve featured Enigma machines here before; they are complex combinations of mechanical and electrical components that form one of the most recognizable encryption methods in history.

His first Enigma machine was designed closely after the original. He used custom PCBs for the plugboard and lightboard, which significantly cleaned up the internal wiring. For the lightboard, he cleverly used a laser printer on semi-transparent paper to create crisp letters, illuminated from behind. For the keyboard, he again designed a custom PCB to connect all the switches. However, he encountered an unexpected setback due to error stack-up. We love that he took the time to document this issue and explain that the project didn’t come together perfectly on the first try and how some adjustments were needed along the way.
Continue reading “Modernizing An Enigma Machine”