Stompy, The 18-foot, 2-ton Hexapod Is Ready For Production

Stampy

Over at the Artisan’s Asylum hackerspace in Somerville, MA, something terrifically awesome is happening. They’re building an 18-foot diameter, 2-ton ridable hexapod that can walk over a car. It’s called Project Hexapod and they need your help.

Over the last year or so, the team behind Project Hexapod has developed an amazingly inexpensive hydraulic control system for each of the six legs and created a 1:1 model of the leg fastened to a wheeled cart to get the kinematics down pat. Now, with thousands of pounds of steel already watercut for the legs, they’re turning to the community for a little help with the welding.

The Project Hexapod team estimates they have about 1100 hours of welding time in front of them. They’re looking for a few people around the Boston area that are familiar with steel fabrication and are willing to work on a two-ton robot that can walk over a Volkswagen Beetle.

The guys have put up a little application form if you meet those basic requirements. You can also check out their Facebook page for any announcements and a whole lot of pictures.

Google Glass Controlled Quadcopter

google-glass-quadcopter-control

For some reason this project makes us think of the Dog Pog Grid from Neal Stephenson’s Diamond Age. It’s not that there’s a ton of drones floating around this guy, it’s that he’s got one which looks like it’s his bodyguard and is controlled by the Google Glass he wears on his head. The future is now!

We find the metamorphosis of this project interesting as well. It started as a Leap motion controlled rover project. We saw a similar hack just the other day that paired a Leap Motion with a Hexapod. But [Blaine] wasn’t satisfied with that. Having had a taste for alternate control inputs he dug in and got to work making Google Glass the control interface. But the problem with moving your head to control a rover is that you can’t actually see it because looking down would cause unwanted motion. His solution was to transition to a quadcopter, which will hover at eye level when he’s looking right at it. Glass is sending raw sensor data to a server, which does the translation to control commands for the quadcopter.

Continue reading “Google Glass Controlled Quadcopter”

Six Years, A Giant Robot, And A Kickstarter

robot

Since 2007, [Jamie Mantzel] has been building a huge remote-controlled walking robot. If you’ve been following him on his YouTube channel and blog, you’ve seen the very beginnings of him building a lumber mill to create a workshop, making the legs for his robot, and improving his welding rig. This week, though, has been very special. [Jamie] has finally finished his giant robot project, bidding closed the fevered dream of a madman who awakes to a 10 foot robot in his yard.

The giant robot is constructed nearly entirely out of scrap aluminum. In the interest of simplicity, [Jamie] has come up with some interesting techniques to scale up conventional RC gear to power huge motors swinging giant legs: the steering motors are powered by manual switches, but these switches are activated by servos. A brilliantly simple solution to driving high-current loads if we do say so ourselves.

[Jamie]’s robot has garnered a lot of attention over the years, so much so that toy companies have licensed his designs for a line of battling combat spiderbots. [Jamie] believes his robots should be more educational, so he’s launched a Kickstarter for his own version as a kit. With this kit, getting the bug tank robot up and running isn’t simply a matter of pulling it out of the box and installing batteries; [Jamie]’s version is an actual kit with linkages that must be assembled. We know which version we’d want.

It’s an amazingly impressive project, and we’re glad to see such an awesome cat has finally realized his dream of a walking aluminum arachnid of death.

Leap Motion Controls Hexapod With Hand Signals

leap-motion-hexapod-hand-control

Moving your hand makes this hexapod dance like a stringless marionette. Okay, so there’s obviously one string which is actually a wire but you know what we mean. The device on the floor is a Leap Motion sensor which is monitoring [Queron Williams’] hand gestures. This is done using a Processing library which leverages the Leap Motion API.

Right now the hand signals only affect pitch, roll, and yaw of the hexapod’s body. But [Queron] does plan to add support for monitoring both hands to add more control. We look at the demo after the break and think this is getting pretty close to the manipulations shown by [Tom Cruise] in Minority Report. Add Google Glass for a Heads Up Display and you could have auxiliary controls rendered on the periphery.

While you’re looking at [Queron’s] project post click on his ‘hexapod’ tag to catch a glimpse the build process for the robot.

Continue reading “Leap Motion Controls Hexapod With Hand Signals”

Protoboard Line Following Robot

dspic-line-follower

We love a good line-following robot project and this really hits the spot. It’s got sharp edges, gobs of solder bridging, and look at all those jumper wires! Despite its appearance it puts in a performance that won’t disappoint.

It uses a dsPIC33 to read from half a dozen analog sensors on the bottom of the board. We’re not all that familiar with the chip’s features, but [Exapod] says it’s got an auto-scan feature he uses to read the sensors. This allows him to sample with 12-bit resolution from all six of them at about 30 kHz. No wonder the thing is so responsive in the demo video embedded below. The track he’s using is just some white printer paper with a fat circuit of black electrical tape placed in a somewhat squiggly pattern.

This is also a fun challenge with toys. Here’s one that hacks a hexapod to follow the lines.

Continue reading “Protoboard Line Following Robot”

Quadruple Backflip And Sticks The Landing

This must have been a coding nightmare, and let’s not even mention the particulars of the mechanical build. The blurred ball near the center of this image is a robot doing a quadruple backflip before sticking the landing.

To the right is a high bar supported by a wood column and some guy-wires. At the beginning of the video below [Hinamitetu] hangs the robot from the bar where it starts its performance without any real motion. The servo motors whine as it gets ready; quickly getting up to speed with full revolutions around the bar. Oh how we wish there was more background info on the hardware! But we’re perfectly happy making our way through [Hinamitetu’s] video collection, which include other gymnastics disciplines like the floor routine. He even posted his own blooper reel that shows the high bar isn’t always a rosy experience.

If you’re thirsting for more amazing performances you won’t be disappointed by this high wire act.

Continue reading “Quadruple Backflip And Sticks The Landing”

Robot Theater Isn’t So Much For The Actors As The Stagehands

robot-theater

[Chris Rybitski] developed this low-profile robot to help move scenery on stage. The test footage shows it to be spry and able to move hundreds of pounds of cargo. The demo shows the addition of a wooden platform about twice the length of the metal chassis with casters at each end to support the extra weight. It seems to have no problem moving around with the weight of a couple of human passengers on board.

Crafty systems for changing huge sets has long made the theater a natural breeding ground for hacks. Balanced turn tables, rails systems, and the like are common place. But we think this has a ton of potential. Right now the electronics seem convoluted, as there is an Arduino running the motors which connects to the LAN using an Ethernet shield and that Linksys wireless router.

We think he should patch directly into the serial port of the router. If he loads DD-WRT or OpenWRT he can easily make the remote control a web interface. We also wonder about the possibility of making it a line-follower that can precisely position itself automatically using patterns on the floor.

Continue reading “Robot Theater Isn’t So Much For The Actors As The Stagehands”