Crystal structure of a monolayer of transition metal dichalcogenide.(Credit: 3113Ian, Wikimedia)

Transition-Metal Dichalcogenides: Super-Conducting, Super-Capacitor Semiconductors

Transition-metal dichalcogenides (TMDs) are the subject of an emerging field in semiconductor research, with these materials offering a range of useful properties that include not only semiconductor applications, but also in superconducting material research and in supercapacitors. A recent number of papers have been published on these latter two applications, with [Rui] et al. demonstrating superconductivity in (InSe2)xNbSe2. The superconducting transition occurred at 11.6 K with ambient pressure.

Two review papers on transition metal sulfide TMDs as supercapacitor electrodes were also recently published by [Mohammad Shariq] et al. and [Can Zhang] et al. showing it to be a highly promising material owing to strong redox properties. As usual there are plenty of challenges to bring something like TMDs from the laboratory to a production line, but TMDs (really TMD monolayers) have already seen structures like field effect transistors (FETs) made with them, and used in sensing applications.

TMDs consist of a transition-metal (M, e.g. molybdenum, tungsten) and a chalcogen atom (X, e.g. sulfur) in a monolayer with two X atoms (yellow in the above image) encapsulating a single M atom (black). Much like with other monolayers like graphene, molybdenene and goldene, it is this configuration that gives rise to unexpected properties. In the case of TMDs, some have a direct band gap, making them very suitable for transistors and perhaps most interestingly also for directly growing 3D semiconductor structures.

Heading image: Crystal structure of a monolayer of transition metal dichalcogenide.(Credit: 3113Ian, Wikimedia)

Big Chemistry: Catalysts

I was fascinated by the idea of jet packs when I was a kid. They were sci-fi magic, and the idea that you could strap into an oversized backpack wrapped in tinfoil and fly around was very enticing. Better still was when I learned that these things weren’t powered by complicated rockets but by plain hydrogen peroxide, which violently decomposes into water and oxygen when it comes in contact with a metal like silver or platinum. Of course I ran right to the medicine cabinet to fetch a bottle of peroxide to drip on a spoon from my mother’s good silverware set. Needless to say, I was sorely disappointed by the results.

My little impromptu experiment went wrong in many ways, not least because the old bottle of peroxide I used probably had little of the reactive compound left in it. Given enough time, the decomposition of peroxide will happen all by itself. To be useful in a jet pack, this reaction has to proceed much, much faster, which was what the silver was for. The silver (or rather, a coating of samarium nitrate on the silver) acted as a catalyst that vastly increased the rate of peroxide decomposition, enough to produce jets of steam and oxygen with enough thrust to propel the wearer into the air. Using 90% pure peroxide would have helped too.

As it is for jet packs, so it is with industrial chemistry. Bulk chemical processes can rarely be left to their own devices, as some reactions proceed so slowly that they’d be commercially infeasible. Catalysts are the key to the chemistry we need to keep the world running, and reactors full of them are a major feature of many of the processes of Big Chemistry.

Continue reading “Big Chemistry: Catalysts”

Contrails Are A Hot Topic, But What Is To Be Done?

Most of us first spot them as children—the white lines in the blue sky that are the telltale sign of a flight overhead. Contrails are an instant visual reminder of air travel, and a source of much controversy in recent decades. Put aside the overblown conspiracies, though, and there are some genuine scientific concerns to explore.

See, those white streaks planes leave in the sky aren’t just eye-catching. It seems they may also be having a notable impact on our climate. Recent research shows their warming effect is comparable to the impact of aviation’s CO2 emissions. The question is then simple—how do we stop these icy lines from heating our precious Earth?

Continue reading “Contrails Are A Hot Topic, But What Is To Be Done?”

Schematic of quantum measurement basis on whiteboard

Shedding Light On Quantum Measurement With Calcite

Have you ever struggled with the concept of quantum measurement, feeling it’s unnecessarily abstract? You’re not alone. Enter this guide by [Mithuna] from Looking Glass Universe, where she circles back on the concept of  measurement basis in quantum mechanics using a rather simple piece of calcite crystal. We wrote about similar endeavours in reflection on Shanni Prutchi’s talk at the Hackaday SuperConference in 2015. If that memory got a bit dusty in your mind, here’s a quick course to make things click again.

In essence, calcite splits a beam of light into two dots based on polarization. By aligning filters and rotating angles, you can observe how light behaves when forced into ‘choices’. The dots you see are a direct representation of the light’s polarization states. Now this isn’t just a neat trick for photons; it’s a practical window into the probability-driven nature of quantum systems.

Even with just one photon passing through per second, the calcite setup demonstrates how light ‘chooses’ a path, revealing the probabilistic essence of quantum mechanics. Using common materials (laser pointers, polarizing filters, and calcite), anyone can reproduce this experiment at home.

If this sparks curiosity, explore Hackaday’s archives for quantum mechanics. Or just find yourself a good slice of calcite online, steal the laser pointer from your cat’s toy bin, and get going!

Continue reading “Shedding Light On Quantum Measurement With Calcite”

Making Wire Explode With 4,000 Joules Of Energy

The piece of copper wire moments before getting vaporized by 4,000 joules. (Credit: Hyperspace Pirate, Youtube)
The piece of copper wire moments before getting vaporized by 4,000 joules. (Credit: Hyperspace Pirate, Youtube)

In lieu of high-explosives, an exploding wire circuit can make for an interesting substitute. As [Hyperspace Pirate] demonstrates in a recent video, the act of pumping a lot of current very fast through a thin piece of metal can make for a rather violent detonation. The basic idea is that by having the metal wire (or equivalent) being subjected to a sufficiently large amount of power, it will not just burn through, but effectively vaporize, creating a very localized stream of plasma for the current to keep travelling through and create a major shockwave in the process.

This makes the exploding wire method (EWM) an ideal circuit for any application where you need to have a very fast, very precise generating of plasma and an easy to synchronize detonation. EWM was first demonstrated in the 18th century in the Netherlands by [Martin van Marum]. These days it finds use for creating metal nanoparticles, brief momentary light sources and detonators in explosives, including for nuclear (implosion type) weapons.

While it sounds easy enough to just strap a honkin’ big battery of capacitors to a switch and a piece of wire, [Hyperspace Pirate]’s video demonstrates that it’s a bit more involved than that. Switching so much current at high voltages ended up destroying a solid-state (SCR) switch, and factors like resistance and capacitance can turn an exploding wire into merely a heated one that breaks before any plasma or arcing can take place, or waste a lot of potential energy.

As for whether it’s ‘try at home’ safe, note that he had to move to an abandoned industrial site due to the noise levels, and the resulting machine he cobbled together involves a lot of high-voltage wiring. Hearing protection and extreme caution are more than warranted.

Continue reading “Making Wire Explode With 4,000 Joules Of Energy”

Avian-Inspired Drones: How Studying Birds Of Prey Brings More Efficient Drones Closer

The EPFL LisRaptor with adjustable wings and tail.
The EPFL LisRaptor with adjustable wings and tail.

Throughout evolution, the concept of powered flight has evolved and refined itself multiple times across both dinosaurs (birds), mammals (bats) and insects. So why is it that our human-made flying machines are so unlike them? The field of nature-inspired flying drones is a lively one, but one that is filled with challenges. In a recent video on the Ziroth YouTube channel, [Ryan Inis] takes a look at these efforts, in particular those of EPFL, whose recent RAVEN drone we had a look at recently already.

Along with RAVEN, there is also another project (LisRaptor) based on the Northern Goshawk, a bird of prey seen in both Europe and North-America. While RAVEN mostly focused on the near-vertical take-off that smaller birds are capable of, this project studies the interactions between the bird’s wings and tail, and how these enable rapid changes to the bird’s flight trajectory and velocity, while maintaining efficiency.

The video provides a good overview of this project. Where the LisRaptor differs from the animal is in having a rudder and a propeller, but the former should ideally not be necessary. Obviously the kinematics behind controlled flight are not at all easy, and the researchers spent a lot of time running through configurations aided by machine learning to achieve the ideal – and most efficient – wing and tail configuration. As these prototypes progress, they may one day lead to drones that are hard to differentiate from birds and bats.

Continue reading “Avian-Inspired Drones: How Studying Birds Of Prey Brings More Efficient Drones Closer”

Selectively Magnetizing An Anti-Ferromagnet With Terahertz Laser

It’s a well-known fact that anti-ferromagnetic materials are called that way because they cannot be magnetized, not even in the presence of a very strong external magnetic field. The randomized spin state is also linked with any vibrations (phonons) of the material, ensuring that there’s a very strong resistance to perturbations. Even so, it might be possible to at least briefly magnetize small areas through the use of THz-range lasers, as they disrupt the phonon-spin balance sufficiently to cause a number of atoms to ‘flip’, resulting in a localized magnetic structure.

The research by [Baatyr Ilyas] and colleagues was published in Nature, describing the way the 4.8 THz pulses managed to achieve this feat in FePS3 anti-ferromagnetic material. The change in spin was verified afterwards using differently polarized laser pulses, confirming that the local structures remained intact for at least 2.5 milliseconds, confirming the concept of using an external pulse to induce phonon excitation. Additional details can be found in the supplemental information PDF for the (sadly paywalled with no ArXiv version) paper.

As promising as this sounds, the FePS3 sample had to be cooled to 118K and kept in a vacuum chamber. The brief magnetization also doesn’t offer any immediate applications, but as a proof of concept it succinctly demonstrates the possibility of using anti-ferromagnetic materials for magnetic storage. Major benefit if such storage can be made more permanent is that it might be more stable and less susceptible to outside influences than traditional magnetic storage. Whether it can be brought out of the PoC stage into at least a viable prototype remains to be seen.