A Solar Oven For Cloudy Days

Every Boy Scout or Girl Guide probably had the experience of building a simple solar oven: an insulated box, some aluminum foil, and plastic wrap, and voila! On warm, sunny, summer days, you can bake. On cloudy days, well, you need another plan. The redoubtable [Kris De Decker] and [Marie Verdeil] provide one, with this solar-electric oven over on LowTechMagazine.

Now, you might be wondering: what’s special here? Can’t I just plug a full electric range-oven into the inverter hooked to my Powerwall? Well, yes, Moneybags, you could — if you had a large enough solar setup to offset the storage and inverter losses, that is. But if you only have a few panels, you need to make every watt count. Indeed, this build was inspired by [Kris]’ earlier attempt to power his apartment with solar panels on his balcony. His electric oven is one of the things that stymied him at that time. (Not because cooking took too much energy, but because it took too much power for his tiny battery to supply at once.)

Continue reading “A Solar Oven For Cloudy Days”

After Trucking Them Home, Old Solar Panels Keep On Trucking

The fact that there exist in our world flat rocks that make lightning when you point them at the sun is one of the most unappreciated bits of wizardry in this modern age. As hackers, we love all this of techno-wizardry–but some of us abhor paying full price for it. Like cars, one way to get a great discount is to buy used. [Backyard Solar Project] helped a friend analyze some 14-year-old panels to see just how they’d held up over the years, and it was actually better than we might have expected.

The big polycrystalline panels were rated at 235 W when new, and they got 6 of them for the low, low price of “get this junk off my property”. Big panels are a bit of a pain to move, but that’s still a great deal. Especially considering that after cleaning they averaged 180 W, a capacity factor of 77%. Before cleaning 14 years worth of accumulated grime cost about eight watts, on average, an argument for cleaning your panels. Under the same lighting conditions, the modern panel (rated to 200 W) was giving 82% of rated output.

That implies that after 14 years, the panels are still at about 94% of their original factory output, assuming the factory wasn’t being overoptimistic about the numbers to begin with. Still, assuming you can trust the marketing, a half a percent power drop per year isn’t too bad. It’s also believable, since the US National Renewably Energy Laboratory (yes, they have one) has done tests that put that better than the average of 0.75 %/yr. Of course the average American solar panel lives in a hotter climate than [Backyard Solar Project], which helps explain the slower degradation.

Now, we’re not your Dad or your accountant, so we’re not going to tell you if used solar panels are worth the effort. On the one hand, they still work, but on the other hand, the density is quite a bit lower. Just look at that sleek, modern 200 W panel next to the old 235 W unit. If you’re area-limited, you might want to spring for new, or at least the more energy-dense monocrystalline panels that have become standard the last 5 years or so, which aren’t likely to be given away just yet. On the gripping hand, free is free, and most of us are much more constrained by budget than by area. If nothing else, you might have a fence to stick old panels against; the vertical orientation is surprisingly effective at higher latitudes.

Continue reading “After Trucking Them Home, Old Solar Panels Keep On Trucking”

Vertical Solar Panels Are Out Standing

If you’re mounting solar panels, everybody knows the drill, right? Point them south, angled according to latitude. It’s easy. In a video which demonstrates that [Everyday Dave] is truly out standing in his field, we hear a different story. [Dave] has a year’s worth of data in his Solar Panel Showdown that suggests there are good reasons to mount your panels vertically.

Specifically, [Dave] is using bifacial solar panels– panels that have cells on both sides. In his preferred orientation, one side faces South, while the other faces North. [Dave] is in the Northern Hemisphere, so those of you Down Under would have to do the opposite, pointing one face North and the other South.

Since [Dave] is far from the equator, the N/S vertical orientation beats the pants off of East-West facing panels, especially in winter. What’s interesting is how much better the bifacial panels do compared to the “standard” tilted orientation. While peak power in the summer is much better with the tilted bifacial panels (indeed, even the tilted single-sided panels), in winter the vertical N/S panels blow them out of the water. (Especially when snow gets involved. Vertical panels don’t need sweeping!)

Continue reading “Vertical Solar Panels Are Out Standing”

A piece of perovskite crystal

Perovskite Solar Cell Crystals See The Invisible

A new kind of ‘camera’ is poking at the invisible world of the human body – and it’s made from the same weird crystals that once shook up solar energy. Researchers at Northwestern University and Soochow University have built the first perovskite-based gamma-ray detector that actually works for nuclear medicine imaging, like SPECT scans. This hack is unusual because it takes a once-experimental lab material and shows it can replace multimillion-dollar detectors in real-world hospitals.

Current medical scanners rely on CZT or NaI detectors. CZT is pricey and cracks like ice on a frozen lake. NaI is cheaper, but fuzzy – like photographing a cat through steamed-up glass. Perovskites, however, are easier to grow, cheaper to process, and now proven to detect single photons with record-breaking precision. The team pixelated their crystal like a smartphone camera sensor and pulled crisp 3D images out of faint radiation traces. The payoff: sharper scans, lower radiation doses, and tech that could spread beyond rich clinics.

Perovskite was once typecast as a ‘solar cell wonder,’ but now it’s mutating into a disruptive medical eye. A hack in the truest sense: re-purposing physics for life-saving clarity.

A photo montage of scrap plastic being vacuumed up, processed in the main chamber, and bottled in gas tanks.

Solar Powered Pyrolysis Facility Converts Scrap Plastic Into Fuel

[naturejab] shows off his solar powered pyrolysis machine which can convert scrap plastic into fuel. According to the video, this is the world’s most complex hand-made pyrolysis reactor ever made. We will give him some wiggle room there around “complex” and “hand-made”, because whatever else you have to say about it this machine is incredibly cool!

As you may know pyrolysis is a process wherein heat is applied to organic material in an inert environment (such as a vacuum) which causes the separation of its covalent bonds thereby causing it to decompose. In this case we decompose scrap plastic into what it was made from: natural gas and petroleum.

His facility is one hundred percent solar powered. The battery is a 100 kWh Komodo commercial power tank. He has in the order of twenty solar power panels laying in the grass behind the facility giving him eight or nine kilowatts. The first step in using the machine, after turning it on, is to load scrap plastic into it; this is done by means of a vacuum pump attached to a large flexible tube. The plastic gets pumped through the top chamber into the bottom chamber, which contains blades that help move the plastic through it. The two chambers are isolated by a valve — operating it allows either chamber to be pumped down to vacuum independently.

Once the plastic is in the main vacuum chamber, the eight active magnetrons — the same type of device you’d find in your typical microwave oven — begin to break down the plastic. As there’s no air in the vacuum chamber, the plastic won’t catch fire when it gets hot. Instead it melts, returning to petroleum and natural gas vapor which it was made from. Eventually the resultant vapor flows through a dephlegmator cooling into crude oil and natural gas which are stored separately for later use and further processing.

If you’re interested in pyrolysis you might like to read Methane Pyrolysis: Producing Green Hydrogen Without Carbon Emissions.

Continue reading “Solar Powered Pyrolysis Facility Converts Scrap Plastic Into Fuel”

A photo of the circuit board with components soldered on

A Solar-Only, Battery-Free Device That Harvests Energy From A BPW34 Photodiode

Normally when you think solar projects, you think of big photovoltaic cells. But a photodiode is just an inefficient, and usually much smaller, PV cell. Since [Pocket Concepts]’s Solar_nRF has such a low power budget, it can get away with using BPW34 photodiodes in place of batteries. (Video, embedded below.)

The BPW34 silicon PIN photodiode feeds a small voltage into a BQ25504 ultra-low-power boost converter energy harvester which stores power in a capacitor. When the capacitor is fully charged the battery-good pin is toggled which drives a MOSFET that powers everything downstream.

When it’s powered on, the Nordic nRF initializes, reads the current temperature from an attached I2C thermometer, and then sends out a Bluetooth Low Energy (BLE) advertising packet containing the temperature data. When the capacitor runs out of energy, the battery-good pin is turned off and downstream electronics become unpowered and the cycle begins again.

Continue reading “A Solar-Only, Battery-Free Device That Harvests Energy From A BPW34 Photodiode”

Solar Light? Mains Light? Yes!

So you want a light that runs off solar power. But you don’t want it to go dark if your batteries discharge. The answer? A solar-mains hybrid lamp. You could use solar-charged batteries until they fall below a certain point and then switch to mains, but that’s not nearly cool enough. [Vijay Deshpande] shows how to make a lamp that draws only the power it needs from the mains.

The circuit uses DC operation and does not feed power back into the electric grid. It still works if the mains is down, assuming the solar power supply is still able to power the lamp. In addition, according to [Vijay], it will last up to 15 years with little maintenance.

The circuit was developed in response to an earlier project that utilized solar power to directly drive the light, when possible. If the light was off, the solar power went to waste. Also, if the mains power failed at night, no light.

The answer, of course, is to add a battery to the system and appropriate switching to drive the lights or charge the battery and only draw power from the mains when needed. Since the battery can take up the slack, it becomes easier to load balance. In periods of low sunlight, the battery provides the missing power until it can’t and then the mains supply takes over.

Comparators determine whether there is an under-voltage or over-voltage and use this information to decide whether the battery charges or if the main supply takes over. Some beefy MOSFETs take care of the switching duties. Overall, a good way to save and reuse solar cell output while still drawing from the grid when necessary.

Small solar lights don’t take much, but won’t draw from commercial power. Solar “generators” are all the rage right now, and you could probably adapt this idea for that use, too.