Smartphone Controlled Paper Plane!

We’ve heard of making remote controlled paper airplanes before, but it looks like someone finally figured out one of the best ways to do it. It’s called the PowerUp 3.0, and it’s a smartphone controlled plane module you can strap to almost any paper plane you make.

[Shai Gotein] is the inventor and is both a pilot and an aviation enthusiast, with over 25 years experience. Back in 2008 he was volunteering to teach Aerodynamics to kids, and he realized how handy it would be to have a small plane capable of indoor flight to explain aviation concepts — so he started designing one. The first iteration (PowerUp 1.0) received the ATA Best Hobby Award, but he didn’t stop there!  Continuing to refine his design, version 3.0 is now controllable via an iPhone or Android device using low-energy Bluetooth communications. This gives it about a 55 meter range, and the tiny battery lasts 10 minutes per charge. The best part is you get to design the plane!

Stick around after the break to see a paper plane do things you’d never expect!

Continue reading “Smartphone Controlled Paper Plane!”

Nose Cone Parachute Deployment From A Soda Bottle, Rubber Band, And Servo

nose-cone-parachte

This piece of engineering is so simple and elegant, you’ll want to build a pretty serious water rocket just so you can try it out. It’s an automatic parachute deployment system that you build into the nose-cone of your rocket. The main portion of the build is made out of plastic soda bottles (2 liter size) to end up with a chamber to store the chute, as well as a friction joint that holds the thing together.

The video after the break shows a complete tutorial on how to build one of these. It starts by tracing out a sine-wave-like pattern on the wall of the bottle. The staggered tongues that are left after cutting along this line make up the friction joint. After gluing a cone (the blue thing) to the bottom of the bottle, it receives the parachute and is then slipped over another bottle that makes up the body of the rocket. The rubber band wraps around the outside of the chassis, holding those plastic tongues in place. The loose end of the rubber band is hooked around the horn of a servo motor, which can then be triggered remotely, or by using a sensor of your choosing. There is even a spring made out of a loop of plastic bottle — you can see it just on top of the chute in the image above.

Need a launching system that is as fancy as the parachute system? Here you go.

Continue reading “Nose Cone Parachute Deployment From A Soda Bottle, Rubber Band, And Servo”

Hacking A Cheap Toy Quadcopter To Work With Arduino

Building your own quadcopter is an expensive and delicate ordeal. Only after you navigate a slew of different project builds do you feel confident enough to start buying parts, and the investment may not be worth your effort if your goal is to jump right into some hacking. Fortunately, [Dzl] has a shortcut for us; he reverse engineered the communication protocol for a cheap toy quadcopter to work with an Arduino.

The cheap toy in question is this one from Hobbyking, which you can see flying around in their product demonstration video. [Dzl] cracked open the accompanying control handset to discover which transceiver it used, then found the relevant datasheet and worked out all the pin configuration involved in the SPI communication. Flying data is transmitted as 8 byte packets sent every 20 mS, controlling the throttle, yaw, pitch and roll.

[Dzl] took the build a step further, writing an Arduino library (direct Dropbox download link) that should catch you up to speed and allow you to skip straight to the fun part: hacking and experimenting! See his quick video after the break, then convince yourself you need a quadcopter by watching this one save its creator, [Paul], the trouble of walking his son to the bus stop.

Continue reading “Hacking A Cheap Toy Quadcopter To Work With Arduino”

Opentilt: Tag, You’re Out!

opentilt

Have you ever heard of the game Johann Sebastian Joust? We haven’t either, but [Juerd] has come up with an open source version of it called Opentilt, and we have to admit — it looks like a lot of fun!

Johann Sebastian Joust uses motion controllers for a game that can be played indoors or out, without a screen. Everyone gets a motion controller, and the object of the game is to make everyone else move their controller too fast. It even has a music mode that lets you move your controller relative to the speed of the music! Anyway, it had an extremely successful kickstarter, and it has been debuted at many events around the world — but it’s simply not available to the general public just yet. [Juerd] couldn’t wait that long so he decided to make a similar open source version of it, with cheap off-the-shelf parts. The biggest difference is this one doesn’t have the music.

The build is quite simple and inexpensive. You’re looking at some PVC pipe, an Arduino Nano, a RGB LED, a 2.4GHz radio module, an accelerometer, a pingpong ball, a battery pack, and various other resistors and wire. Nothing to it really! All the source code, and instructions are available off of [Juerd’s] site, and he’s done a great job explaining everything, down to fixing a common problem that some people have on Arduino Nanos!

Stick around after the break to see how the original Johann Sebastian Joust game works!

Continue reading “Opentilt: Tag, You’re Out!”

$13 Homemade RC Blimp

Here’s a great little RC hack you can do with the kids this weekend — make your very own RC Blimp!

First you’ll have to hack apart one of those little 1/64 scale RC cars you can get for a few dollars, and then all you need are a few household supplies, and a helium filled balloon. [Masynmachien] says the total cost of this project can be as little as $13 — depending on where you get your supplies.

So how does it work? Well, an 11″ helium filled party balloon can lift about 10g quite easily — if you strip away the body and chassis of one those RC cars you’ll be well under that weight. The RC cars typically have one small DC motor and a steering actuator, but [Masynmachien] found you can actually connect a second DC motor to the leads for the actuator and it works just fine. Doing this you can create a main prop to drive the blimp, and a secondary tail rotor to steer it. The Instructable uses mostly recycled components, but we’re sure if you had more time you could design and build an even nicer one. When the blimp is properly trimmed it sinks slowly in the air, so the main prop is responsible for keeping it at a certain altitude — this takes a bit of getting used to but it’s an easy way to get around steering in all directions.

Looking for a more advanced project using these little cars? How about building a RC plane with them! Or if you’re feeling ambitious, you can also control them using your computer! Stick around after the break to see it in action!

Continue reading “$13 Homemade RC Blimp”

Should All Quadrotors Look Like This?

In recent years, quadrotors have exploded in popularity. They’ve become cheap, durable, and can do some really impressive things, but are they the most efficient design? The University of Queensland doesn’t think so.

Helicopters are still much more efficient and powerful due to their one big rotor, and with the swashplate mechanism, perhaps even more maneuverable — after all did you see our recent post on collective pitch thrust vectoring? And that was a plane! A few quick searches of helicopter tricks and we think you’ll agree.

The new design, which is tentatively called the Y4, or maybe a “Triquad” is still a quadrotor, but it’s been jumbled up a bit, taking the best of both worlds. It has a main prop with a swashplate mechanism, and three smaller rotors fixed at 45 degree angles, that provide the counter torque — It’s kind of like a helicopter with three tails.

Regarding efficiency, the researchers expect this design could achieve an overall increase of about 25% in performance, compared to that of a standard quadrotor. So, they decided to test it and built a quad and a Y4 as similar as possible — the same size, mass, batteries, arms, and controller board. The results? The Y4 had an increased run time of 15%! They think the design could very well make the 25% mark, because in this test study, the Y4 was designed to meet the specifications of the quad, whereas a more refined Y4 without those limitations could perhaps perform even better.

Unfortunately there’s no video we can find, but if you stick around after the break we have a great diagram of how (and why) this design works!

Continue reading “Should All Quadrotors Look Like This?”

Collective Pitch Thrust Vectoring On A RC Plane

The RC plane shown above is hovering in that position. And that’s about the least impressive thing it can do. This is the power of Collective Pitch Thrust Vectoring… on a plane.

So what exactly is Collective Pitch Thrust Vectoring anyway? Put simply, it’s like strapping a helicopter rotor to the front of a plane. We think the basic mechanism behind this is called a Swashplate (as found on a helicopter rotor), which allows for thrust vectoring, meaning the propeller blades can actually change their pitch cyclically, while still spinning at high speeds! This is what allows helicopters to do crazy tricks like barrel rolls.

A normal RC plane can only increase or decrease thrust with the speed of the engine. But with this, the thrust can be changed cyclically as the blades spin allowing for thrust vectoring (advanced steering). Couple that with some huge control surfaces and wing stabilizers and that means some seriously crazy aerodynamic feats.

Watch the video after the break, it’s amazing.

Continue reading “Collective Pitch Thrust Vectoring On A RC Plane”