DIY Keyboard Can’t Get Much Smaller

The PiPi Mherkin really, really can’t get much smaller. The diminutive keyboard design mounts directly to the Pi Pico responsible for driving it, has a similar footprint, and is only about 9 mm thick. It can’t get much smaller since it’s already about as small as the Pi Pico itself.

Running on the Pi Pico is the PRK firmware, a keyboard framework that makes the device appear as a USB peripheral, checking the “just works” box nicely. The buttons here look a little sunken, but the switches used are available in taller formats, so it’s just a matter of preference.

We have to admit the thing has a very clean look, but at such a small size we agree it is perhaps more of a compact macropad than an actual, functional keyboard. Still, it might find a place in the right project. Design files are online, if you’re interested.

If you like small, compact keyboards but would prefer normal-sized keys, check out the PiPi Mherkin’s big brother, the PiPi Gherkin which gets clever with dual-function tap/hold keys to provide full functionality from only 30 keys, with minimal hassle.

Keyboards are important, after all, and deserve serious attention, as our own [Kristina Panos] knows perfectly well.

This Drone Can Fly, Swim, And Explode….. Wait, What?

You’ve probably heard of micro-drones, perhaps even nano-drones, but there research institutions that shrink these machines down to the size of insects. Leading from the [Wiss Institute For Biologically Inspired Engineering] at Harvard University, a team of researchers have developed a miniscule robot that — after a quick dip — literally explodes out of the water.

To assist with the take off, RoboBee has four buoyant outriggers to keep it near the water’s surface as it uses electrolysis to brew oxyhydrogen in its gas chamber. Once enough of the combustible gas has accumulated — pushing the robot’s wings out of the water in the process– a sparker ignites the fuel, thrusting it into the air. As yet, the drone has difficulty remaining in the air after this aquatic takeoff, but we’re excited to see that change soon.

Looking like a cross between a water strider and a bee, the team suggest this latest version of the RoboBee series  — a previous iteration used electrostatic adhesion to stick to walls — could be used for search and rescue, environmental monitoring, and biological studies. The capacity to transition from aerial surveyor, to underwater explorer and back again would be incredibly useful, but in such a small package, it is troublesome at best. Hence the explosions.

Continue reading “This Drone Can Fly, Swim, And Explode….. Wait, What?”

Hackaday Prize Entry: DIY 6-Axis Micro Manipulator

[David Brown]’s entry for The Hackaday Prize is a design for a tool that normally exists only as an expensive piece of industrial equipment; out of the reach of normal experimenters, in other words. That tool is a 6-axis micro manipulator and is essentially a small robotic actuator that is capable of very small, very precise movements. It uses 3D printed parts and low-cost components.

SLS Nylon Actuator Frame. Motor anchors to top right, moves the central pivot up and down to deflect the endpoints.

The manipulator consists of six identical actuators, each consisting of a single piece of SLS 3D printed nylon with a custom PCB to control a motor and read positional feedback. The motor moves the central pivot point of the 3D printed assembly, which in turn deflects the entire piece by a small amount. By anchoring one point and attaching the other, a small amount of highly controllable movement can be achieved. Six actuators in total form a Gough-Stewart Platform for moving the toolhead.

Interestingly, this 6-Axis Micro Manipulator is a sort of side project. [David] is interested in creating his own digital UV exposer, which requires using UV laser diodes with fiber optic pig tails attached. In an industrial setting these are created by empirically determining the optimal position of a fiber optic with regards to the laser diode by manipulating it with a micro manipulator, then holding it steady while it is cemented in place. Seeing a distinct lack of micro manipulators in anything outside of lab or industrial settings, and recognizing that there would be applications outside of his own needs, [David] resolved to build one.

Cheap DIY FPV Micro-Drone

FPV drones are a fun but often costly hobby for beginners. Opting for a smaller drone will reduce the chance of damaging the drone when one invariably crashes and the smaller props are also a lot safer if there are any innocent bystanders. YouTuber and Instructables user [Constructed] wanted a cheap FPV capable drone that they could comfortably fly in-and-out of doors, so of course they built their own.

Once the drone’s frame was 3D printed, the most complex part about soldering four small-yet-powerful 8.5 mm motors to the Micro Scisky control board is ensuring that you attach them in the correct configuration and triple-checking them. A quick reshuffling of the battery connections and mounting the FPV camera all but completed the hardware side of the build.

Before plugging your flight controller into your PC to program, [Constructed] warns that the battery must be disconnected unless you want to fry your board. Otherwise, flashing the board and programming it simply requires patience and a lot of saving your work. Once that’s done and you’ve paired everything together, the sky — or ceiling — is the limit!

Continue reading “Cheap DIY FPV Micro-Drone”

Snake On A BBC Micro:bit

The first of the BBC Micro Bits are slowly making their ways into hacker circulation, as is to be expected for any inexpensive educational gadget (see: Raspberry Pi). [Martin] was able to get his hands on one and created the “hello world” of LED displays: he created a playable game of snake that runs on this tiny board.

For those new to the scene, the Micro Bit is the latest in embedded ARM systems. It has a 23-pin connector for inputs and outputs, it has Bluetooth and USB connectivity, a wealth of sensors, and a 25-LED display. That’s small for a full display but it’s more than enough for [Martin]’s game of snake. He was able to create a hex file using the upyed tool from [ntoll] and upload it to the Micro Bit. Once he worked out all the kinks he went an additional step further and ported the game to Minecraft and the Raspberry Pi Sense HAT.

[Martin] has made all of the code available if you’re lucky enough to get your hands on one of these. Right now it seems that they are mostly in the hands of some UK teachers and students, but it’s only a matter of time before they become as ubiquitous as the Raspberry Pi or the original BBC Micro.  It already runs python, so the sky’s the limit on these new boards.

Continue reading “Snake On A BBC Micro:bit”

The Biggest Super Hexagon Fan

For those who haven’t addicted themselves to Super Hexagon yet, it’s pretty… addicting, to say the least. Normally this 80’s arcade-style game would run in a browser but some of the people at Club de Jaqueo in Buenos Aires decided to cram all of that into an Arduino. They didn’t stop there, though, and thought that it would work best with a POV display.

To navigate the intricate maze of blending a POV display with a fast-paced game like this, the group turned to the trusty Arduino Micro. After some frustration in the original idea, they realized that the game is perfectly suited for a POV display since it’s almost circular. The POV shouldn’t take up too much of the processing power of the Arduino, so most of the clock cycles can be used for playing the game. They couldn’t keep the original name anymore due to the lack of hexagon shape (and presumably copyrights and other legal hurdles), but the style of the original is well-preserved.

The group demonstrated their setup this past weekend, and the results are impressive judging by the video below. They’ve also released their source code and schematics as well, in case you have an old fan (or maybe even a bicycle?) lying around that is just begging to be turned into a mini-arcade game.

Continue reading “The Biggest Super Hexagon Fan”

LittleBits Little Lathe

LittleBits Lathe

Do you need a practical, useful and fun project for a young hacker who is under your wing? How about letting them get a bit of electronics experience snapping together a LittleBits little lathe to customize their crayons. Truthfully, this isn’t much of an electronics hack, but it does make fun use of a LittleBits motor module and all those old crayons you might have lying around. You could make this a weekend project to share with the kids, plus you never know what will spark that first interest in a young engineer.

If you’re unfamiliar with LittleBits, they are small electronic modules that magnetically snap together to build larger circuits. The modules are color-coded by functionality with non-reversible magnetic connectors to help the little ones understand how to connect and integrate the modules. These LittleBits kits are great for the young beginner in electronics or just for fun at any age. Individually, the modules are quite expensive, but the parts are well worth the price because children will find the system intuitive to use and the modules are robust in the hands of careless kids. A more cost-effective purchase would be one of the kits from Adafruit.com.

In this Instructable, [maxnoble440] demonstrates the little lathe turning a crayon using a variety of tools from the very sharp to the “safe for all ages.” The geared LittleBits motor turns slowly and appears to have enough torque to carve crayons—and possibly clay—packed around a small dowel. To build this project you will need a “little bit” of wood-crafting skill to construct the mini-lathe bed. All the instructions are available in the Instructable as well as a short video, which you can watch after the break below.

Continue reading “LittleBits Little Lathe”