Sewing Conductive Thread In Parallel Lines

[Cynthia] has shared a great video of  machine sewing parallel lines of conductive thread onto ribbon using a cording foot which usually comes standard with most machines. This technique could be particularly useful when using addressable LEDs like a NeoPixel to get the ground, data, and positive lined up fairly accurately. Sewing the conductive thread onto ribbon also makes it a hell of a lot easier to attach to many garments or textiles,  and also makes it easier to replace or reuse.

The method is pretty easy, essentially using the grooves in the cording foot to guide the conductive treads and ensuring even spacing. Two of the lines are sewn down approximately 3 mm apart using a zigzag stitch. The third line is sewn separately making sure the stitching doesn’t break the first two lines. In the video, a striped ribbon is used which has slight troughs that additionally helps the threads stay in place and the sewer to stay on target.

[Cynthia] of Cynthia Designs Studio has been experimenting with embedding electronics in textiles and has quite a few great videos that you can check out on the Cynthia Designs Studio YouTube channel.

We have seen a machine embroidered LED matrix and a hand sewn LED quilt here on Hackaday, but those who have tried know that conductive thread can be very tricky to work with and keep conductivity.  Do you have any tips or tricks for hand or machine sewing conductive thread? If so, please share in the comments below.

Continue reading “Sewing Conductive Thread In Parallel Lines”

The Ancient Greeks Invented Kevlar Over 2 Millennia Ago

In 356-323 B.C. Alexander the Great of Macedon conquered almost the entire known world by military force. Surprisingly, not much is known about how he did it! An ancient and mysterious armor called Linothorax was apparently used by Alexander and his men which may have been one of the reasons for his ever so successful conquest. A group of students at the University of Wisconsin Green Bay (UWGB) have been investigating in detail and making their own version of it.

The problem is this type of armor decomposes naturally over time unlike more solid artifacts of stone and metal — meaning there is no physical proof or evidence of its existence. It has been described in around two dozen pieces of ancient literature and seen in over 700 visuals such as mosaics, sculptures and paintings — but there are no real examples of it. It is made (or thought to be) of many layers of linen glued together, much the same way that Kevlar body armor works.

The cool thing about this project is the students are designing their own Linothorax using authentic fabrics and glues that would have been available in that time period. The samples have been quite successful, surviving sharp arrows, swords, and even swinging axes at it. If this is the secret to Alexander the Great’s success… no wonder!

The group has lots of information on the topic and a few videos — stick around to learn more!

Continue reading “The Ancient Greeks Invented Kevlar Over 2 Millennia Ago”

NFC Ring Unlocks Your Phone

NFC Ring

This little ring packs the guts of an NFC keyfob, allowing [Joe] to unlock his phone with a touch of his finger.

The NFC Ring was inspired by a Kickstarter project for a similar device. [Joe] backed that project, but then decided to build his own version. He took apart an NFC keyfob and desoldered the coil used for communication and power. Next, he wrapped a new coil around a tube that was matched to his ring size. With this assembly completed, epoxy was used to cast the ring shape.

After cutting the ring to size, and quite a bit of polishing, [Joe] ended up with a geeky piece of jewelry that’s actually functional. To take care of NFC unlocking, he installed NFC LockScreenOff. It uses Xposed, so a rooted Android device is required.

We’ll have to wait to see how [Joe]’s homemade solution compares to his Kickstarter ring. Until then, you can watch a quick video of unlocking a phone with the ring after the break.

Continue reading “NFC Ring Unlocks Your Phone”

Stuffing An RFID Card Into A Finger Ring

[Benjamin Blundell] loves wearable technology — but isn’t very happy with commercial offerings — at least not yet. He wanted to take one of his personal RFID cards, and fit it into a much smaller form factor, a 3D printed RFID ring.

The cool thing with most RFID cards today is they are made of a plastic that is quite easily dis-solvable in Acetone. Simply soak the card for about 30 minutes (depends on the card) and the plastic will simply peel away, revealing the microchip and copper antenna coil. It kind of looks alive when it’s melting…

The problem is, the antenna coil is generally the size of the card — how exactly are you going to fit that into a ring? [Benjamin] managed to find some surrogate RFID key tags, with a much smaller antenna coil. A little bit of solder later and he was able to attach his RFID microchip onto the new antenna! He mentions it is possible to wind your own antenna… but to get the frequency just right might be a bit challenging.

Continue reading “Stuffing An RFID Card Into A Finger Ring”

RFID Jacket Flashes The Crowd At Make Fashion 2014

RFID-DRESS

The [RADLab team] has created an eye-opening RFID jacket for Make Fashion 2014. For this project, [Dan Damron, Chris Zaal, and Ben Reed] of RADLab teamed up with designer [Laura Dempsey] to create a jacket which responded both to a dancer on the runway and the audience itself. RADLab stands for Radio Frequency Identification Application Development Lab, so you can probably guess that RFID was their weapon of choice for interaction. We’ve got a bit of RFID experience here at Hackaday, having recently used it at The Gathering in LA. The [RADLab team] didn’t skimp on processing power for this jacket. A BeagleBone Black running Debian controls the show. The BeagleBone receives data from a Thingmagic M6e 4 port UHF RFID Reader. The M6e is connected to 4 directional antennas. The BeagleBone responds differently depending on which RFID card is read, and which antenna reads it. With the data processed, the BeagleBone then issues commands to a teensy 3.0, which controls  WS2811 “Neopixel” addressable RGB LEDs sewn into the jacket.

During the fashion show, the jacket wearer danced with a second model who had RFID tags sewn into his t-shirt. The LED clusters on the front, back and sleeves of the jacket would light up, and change color and flash frequency based upon which tag and antenna got a read. Once the performance was over, the audience was encouraged to pick up tags and interact with the jacket themselves. The software was still very much beta, so the [RADLab team] monitored everything via WiFi and restarted the software when necessary.

Continue reading “RFID Jacket Flashes The Crowd At Make Fashion 2014”

Forget Stopping Bullets – Vest Warms You While Stopping Taser

[Bruce Wayne] [Shenzhen] wanted a garment that would protect him from a jolt, while keeping him toasty in the cold weather. Well that’s not it at all, these are merely two of his projects using the same material in different ways.

We’re going to start with the infrared image on the right. This is a vest with chest and back pieces made of carbon tape totaling two meters of the material swirled on each side. Hook it to a power source and the carbon tape warms the wearer. Portability is something of an issue as each “element” takes 36 W of power (3A at 12V). Click through for advice on how to interface the tape with the power source.

Onto the main event… avoiding electrical shock when you get all up in the grill of that mall cop you’re hated for years. [Shenzhen’s] jacket is really just an ordinary long-sleeved coat. But he separated the lining at the bottom seam and used fusible material to hold the carbon tape in place. The carbon tape provides a better conductor than your skin, preventing the shock from stunning you as it was intended. This really is the thing of superheroes, or former editors who should have known better.

3D Printed RGB LED Bracelet

3dprintedrgbbraclet

[Marcus’s] 3D-printed LED bracelet has moved through a number of revisions recently, but each iteration is impressive in both simplicity and functionality. Inspired to experiment with his print of [nervoussystem’s] Diagrid Bracelet, [Marcus] took the opportunity to add some LEDs with his first build, which combined a strip of RGB LEDs, a small battery, and an Adafruit Trinket microcontroller.

A second build soon followed, which overhauled the bracelet’s design into a more solid form and managed to double the amount of LEDs by upgrading to a different strip. The bracelet is currently in its third revision, cycling through the spectrum for around 3.5 hours on a single charge. This build also sports a 3-axis accelerometer: when the wearer shakes the bracelet, the colors skip around. If shaken long enough, the bracelet will enter a dazzling flurry of color flickering. Stick around after the break for a few demonstration videos. If you want to print your own, head over to [Marcus’s] Thingiverse file.

Continue reading “3D Printed RGB LED Bracelet”