Hackaday Podcast Episode 346: Melting Metal In The Microwave, Unlocking Car Brakes And Washing Machines, And A Series Of Tubes

Wait, what? Is it time for the podcast again? Seems like only yesterday that Dan joined Elliot for the weekly rundown of the choicest hacks for the last 1/52 of a year. but here we are. We had quite a bit of news to talk about, including the winners of the Component Abuse Challenge — warning, some components were actually abused for this challenge. They’re also a trillion pages deep over at the Internet Archive, a milestone that seems worth celebrating.

As for projects, both of us kicked things off with “Right to repair”-adjacent topics, first with a washing machine that gave up its secrets with IR and then with a car that refused to let its owner fix the brakes. We heated things up with a microwave foundry capable of melting cast iron — watch your toes! — and looked at a tiny ESP32 dev board with ludicrously small components. We saw surveyors go to war, watched a Lego sorting machine go through its paces, and learned about radar by spinning up a sonar set from first principles.

Finally, we wrapped things up with another Al Williams signature “Can’t Miss Articles” section, with his deep dive into the fun hackers can have with the now-deprecated US penny, and his nostalgic look at pneumatic tube systems.

Download this 100% GMO-free MP3.

Continue reading “Hackaday Podcast Episode 346: Melting Metal In The Microwave, Unlocking Car Brakes And Washing Machines, And A Series Of Tubes”

Charge NiMH Batteries With Style, Panache And An RP2040

The increasing dominance of lithium cells in the market place leave our trusty NiMH cells in a rough spot. Sure, you can still get a chargers for the AAs in your life, but it’s old tech and not particularly stylish. That’s where [Maximilian Kern] comes in, whose SPINC project was recently featured in IEEE Spectrum— so you know it has to be good.

With the high-resolution LCD, the styling of this device reminds us a little bit of the Pi-Mac-Nano— and anything that makes you think of a classic Macintosh gets automatic style points. There’s something reminiscent of an ammunition clip in the way batteries are fed into the top and let out the bottom of the machine.

[Maximilian] thought of the, ah, less-detail-oriented amongst us with this one, as the dedicated charging IC he chose (why reinvent the wheel?) is connected to an H-bridge to allow the charger to be agnostic as to orientation. That’s a nice touch. An internal servo grabs each battery in turn to stick into the charging circuit, and deposits it into the bottom of the device once it is charged. The LCD screen lets you monitor the status of the battery as it charges, while doubling as a handy desk clock (that’s where the RP2040 comes in). It is, of course powered by a USB-C port as all things are these days, but [Maximilian] is just drawing from the 5V line instead of making proper use of USB-C Power Delivery. (An earlier draft of this article asserted incorrectly that the device used USB-C-PD.)  Fast-charging upto 1A is enabled, but you might want to go slower to keep your cells lasting as long as possible. Firmware, gerbers and STLs are available on GitHub under a GPL-3.0 license– so if you’re still using NiCads or want to bring this design into the glorious lithium future, you can consider yourself welcome to.

We recently featured a AA rundown, and for now, it looks like NiMH is still the best bang for your buck, which means this project will remain relevant for a few years yet. Of course, we didn’t expect the IEEE to steer us wrong.

Thanks to [George Graves] for the tip.

Supersized Calculator Brings The Whole Intel 4004 Gang Together

Though mobile devices and Apple Silicon have seen ARM-64 explode across the world, there’s still decent odds you’re reading this on a device with an x86 processor — the direct descendant of the world’s first civilian microprocessor, the Intel 4004. The 4004 wasn’t much good on its own, however, which is why [Klaus Scheffler] and [Lajos Kintli] have produced super-sized discrete chips of the 4001 ROM, 4002 RAM, and 4003 shift register to replicate a 1970s calculator at 10x the size and double the speed, all in time for the 4004’s 50th anniversary.

We featured this project a couple of years back, when it was just a lonely microprocessor. Adding the other MSC-4 series chips enabled the pair to faithfully reproduce the logic of a Busicom 141-PF calculator, the very first to market with Intel’s now-legendary microprocessor. Indeed, this calculator is the raison d’etre for the 4004: Busicom commissioned the whole Micro-Computer System 4-bit (MCS-4) set of chips specifically for this calculator. Only later, once they realized what they had made, did Intel buy the rights back from the Japanese calculator company, and the rest, as they say, is history.

Continue reading “Supersized Calculator Brings The Whole Intel 4004 Gang Together”

Hackaday Podcast Episode 345: A Stunning Lightsaber, Two Extreme Cameras, And Wrangling Roombas

It’s a wet November evening across Western Europe, the steel-grey clouds have obscured a rare low-latitude aurora this week, and Elliot Williams is joined by Jenny List for this week’s podcast. And we’ve got a fine selection for your listening pleasure!

The 2025 Component Abuse Challenge has come to an end, so this week you’ll be hearing about a few of the entries. We’ve received an impressive number, and as always we’re bowled over by the ingenuity of Hackaday readers in pushing parts beyond their limits.

In the news is the potential discovery of a lost UNIX version in a dusty store room at the University of Utah, Version 4 of the OS, which appeared in 1973. Check out your own stores, for hidden nuggets of gold. In the hacks, we have two cameras at the opposite end of the resolution spectrum, but sharing some impressive reverse engineering. Mouse cameras and scanner cameras were both a thing a couple of decades ago, and it’s great to see people still pushing the boundaries. Then we look at the challenge of encoding Chinese text as Morse code, an online-upgraded multimeter, the art of making lenses for an LED lighting effect, and what must be the best recreation of a Star Wars light sabre we have ever seen. In quick hacks we have a bevvy of Component Abuse Challenge projects, a Minecraft server on a smart light bulb, and a long term test of smartphone battery charging techniques.

We round off with a couple of our long-form pieces, first the uncertainties about iRobot’s future and what it might mean for their ecosystem — think: cheap hackable robotics platform! — and then a look at FreeBSD as an alternative upgrade path for Windows users. It’s a path not without challenges, but the venerable OS still has plenty to give.

As always, you can listen using the links below, and we’ve laidout links to all the articles under discussion at the bottom of the page.

Download our finest MP3 right here.

Continue reading “Hackaday Podcast Episode 345: A Stunning Lightsaber, Two Extreme Cameras, And Wrangling Roombas”

A photo of some drives with their controller boards

Installing An 84MB Hard Drive Into A PDP-11/44

Over on YouTube [Usagi Electric] shows us how he installed an 84MB hard drive into his PDP-11/44.

In the beginning he purchased a bunch of RA70 and RA72 drives and board sets but none of them worked. As there are no schematics it’s very difficult to figure out how they’re broken and how to troubleshoot them.

Fortunately his friend sent him an “unhealthy” Memorex 214 84MB hard drive, also known as a Fujitsu 2312. The best thing about this hard drive is that it comes complete with a 400 page manual which includes the full theory of operation and a full set of schematics. Score!

Continue reading “Installing An 84MB Hard Drive Into A PDP-11/44”

FLOSS Weekly Episode 854: The Big Daddy Core

This week Jonathan and Ben chat with Jason Shepherd about Ocre and Atym.io! That’s the lightweight WebAssembly VM that lets you run the same containers on Linux and a host of embedded platforms, on top of the Zephyr embedded OS. What was the spark that led to this project’s creation, what does Atym.io bring to the equation, and what are people actually doing with it? Watch to find out!

Continue reading “FLOSS Weekly Episode 854: The Big Daddy Core”

[Gerry] holding up a DIP IC

Emulating A 74LS48 BCD-to-7-Segment Decoder/Driver With An Altera MAX 7000 “S” Series Complex Programmable Logic Device

Over on the [Behind The Code with Gerry] YouTube channel our hacker [Gerry] shows us how to emulate a 74LS48 BCD-to-7-segment decoder/driver using an Altera CPLD Logic Chip From 1998.

This is very much a das blinkenlights kind of project. The goal is to get a 7-segment display to count from 0 to 9, and that’s it. [Gerry] has a 74LS193 Up/Down Binary Counter, a 74LS42 BCD to Decimal Decoder, and some 74LS00 NAND gates, but he “doesn’t have” an 74LS48 to drive the 7-segment display so he emulates one with an old Altera CPLD model EPM7064SLC44 which dates back to the late nineties. A CPLD is a Complex Programmable Logic Device which is a kind of precursor to FPGA technology.

Continue reading “Emulating A 74LS48 BCD-to-7-Segment Decoder/Driver With An Altera MAX 7000 “S” Series Complex Programmable Logic Device”