Hackaday Prize Official Rules Update

We have made a change to the Official Rules of the 2017 Hackaday Prize that removes a potential ambiguity in the language. This section details the Announcement of the Challenge Round Results for Challenge Round 2 finalists. The correct language is as follows:

ii. On or around June 19, 2017, Sponsor will select up to twenty (20) Challenge Round 2 submissions to advance to the Final Round based on the six (6) evenly-weighted criteria above.

This section is now consistent with the existing language for the other four challenges. It is important to disclose changes to the official rules which is why we’re publishing this article today.

The Hackaday Prize is our global engineering initiative that challenges hackers, designers, and engineers to build something that matters. With over $250,000 in prizes, this summer is a great time to direct your creative energy toward engineering for social good. Right now we’re looking for things that move humanity forward with the Wings, Wheels, and Walkers challenge. Also in progress right now is the Best Product part of the Hackaday Prize which tells the tale of what goes into product engineering and building a community and a company around your creations. As we progress into the summer we’re looking forward to Assistive Technology, and Anything Goes challenges. Enter now!

Hackaday Prize Entry: Internet Of Fidget Spinners

We just closed out the Internet of Useful Things round of the Hackaday Prize, which means we’re neck deep in judging projects to move onto the final round this fall. Last week, everyone on Hackaday.io was busy getting their four project logs and illustrations ready for the last call in this round of the Hackaday Prize. These projects are the best of what the Internet of Things has to offer because this is the Internet of Useful things.

We’re not sure how [Matthias]’ project will rank. It’s an Internet of Things fidget spinner. Yeah, we know, but there are some interesting engineering challenges in building an Internet-connected fidget spinner.

This is a PoV fidget spinner, which means the leading edges of this tricorn spinner are bedazzled with APA102 LEDs. Persistence-of-vision toys are as old as Hackaday, and the entire idea of a fidget spinner is to spin, so this at least makes sense.

These PoV LEDs are driven by an ESP8285, or an ESP8266 with onboard Flash. This is probably the smallest wireless microcontroller you can find, an important consideration for such a small build. Power comes from a tiny LiPo, and additional peripherals include an accelerometer to measure wobble and an optical switch to measure the rotation speed.

These electronics are fairly standard, and wouldn’t look out of place in any other project in The Hackaday Prize. The trick here is mechanical. [Matthias] needs to mount a skateboard bearing to a PCB, and no one has any idea how he’s going to do that. A fidget spinner should be well-balanced, and again [Matthias] is running into a problem. Has anyone here ever done mass and density calculations on PCBs and lithium cells? Is it possible to 3D print conformal counterweights? Has science gone too far?

Will the Internet of Things PoV Fidget Spinner make it to the finals round of The Hackaday Prize? We’ll need to wait a week or so to find out. One thing is for certain, though: you’re going to see this on AliBaba before September.

Hackaday Prize Entry: Compact Braille Printing Press

For the last few years of the Hackaday Prize, we’ve seen a few projects that aim to bring Braille to the masses in a cheap, easy to use electronic device. Aside from the interesting technology that would go into such a device like tiny motors moving even tinier bumps, these projects are a great example of an enabling technology.

For his Hackaday Prize project, [haydn jones] is building something that makes Braille more accessible, but without all that messy technology. It’s 3D printed movable type for Braille. It’s a Braille printing press for nurses, teachers, and anyone else who would like to leave small notes for people who read Braille.

This Hackaday Prize project is the answer to the question, ‘how do you leave a note for a blind person’. Yes, digital voice recorders exist, but movable type is a technology that’s thousands of years old and doesn’t require batteries or any of the other failings of modern electronics. To use this device, all you need to do is assemble a message — a handy Braille cheat sheet is coming soon — and emboss a piece of paper. Keep in mind Braille embossers cost a small fortune, and this project is simple and cheap bits of plastic.

It’s a great idea, and one we’re surprised we haven’t seen before. All in all, a great entry for The Hackaday Prize.

Wings, Wheels, And Walkers That Move Humanity Forward

Rise to the challenge of building Wings, Wheels, and Walkers. Today, we begin the search for things that move and make the world a little bit better place. This is the first day of a new round in the 2017 Hackaday Prize and your renewed opportunity to show us what you’ve got.

We just closed off the IuT ! IoT round, a more inward focused challenge which called for builds that added meaningful connectivity to devices in our lives. With the Wings, Wheels, and Walkers challenge we turn our gaze outward to see what you can do build that really moves.

There is so much that falls into this category; personal transport, robotic assist, automated delivery, airborne agriculture — anything that moves or supports movement. Many of the finalists and winners from the past few years fall into this category. In 2015 the Light Utility Electric Vehicle won 3rd place, and of course the grand prize winner that year was a wheelchair-based system. In 2016 we saw a shoreline debris clearing robot and a modular robot system took the top spot. Now we want to see even more creations that move humanity forward.

The Hackaday Prize is a global engineering initiative that seeks out ideas and creations that have the power to do social good. Show off your creation and you’ve already accomplished that and inspired others to do the same. Many of the entries will be recognized beyond that. This year’s cash prizes total more than $250,000. Just for this challenge (which ends on July 24th) we’ll award 20 entries $1000 each. At the end of all six rounds, 6 of the 120 finalists will be selected to receive $50k, $30k, $20k, $15k, $10k, and $5k. Enter now!

Check out all of the entries so far, and keep your on Hackaday to find out the twenty finalists from the IuT ! IoT round, an announcement due in about a week.

Hackaday Prize Entry: USB GSM GPS 9DOF SD TinyTracker Has All The Acronyms

[Paul] has put together an insanely small yet powerful tracker for monitoring all the things. The USB TinyTracker is a device that packages a 48MHz processor, 2G modem, GPS receiver, 9DOF motion sensor, barometer, microphone, and micro-SD slot for data storage. He managed to get it all to fit into a USB thumb drive enclosure, meaning that you can program it however you want in the Arduino IDE, then plug it into any USB port and let it run. This enables things like remote monitoring, asset tracking, and all kinds of spy-like activity.

One of the most unusual aspects of his project, though, is this line: “Everything came together very nicely and the height of parts and PCBs is exactly as I planned.” [Paul] had picked out an enclosure that was only supposed to fit a single PCB, but with some careful calculations, and picky component selection, he managed to fit everything onto two 2-layer boards that snap together with a connector and fit inside the enclosure.

We’ve followed [Paul’s] progress on this project with an earlier iteration of his GSM GPS Tracker, which used a Teensy and fit snugly into a handlebar, but this one is much more versatile.

Hackaday Prize Entry: Earthquake Warnings Via Tweets

Seismic waves travel through the Earth’s crust at about four kilometers a second. Light travels through fiber at about 200,000 kilometers per second. Taking network lag into account, it’s possible to read a Tweet about an earthquake a few seconds before the shaking starts. This is the concept behind an XKCD strip and a project for the Hackaday Prize.

[Zalmotek]’s Earthquake Validation Gadget is an Internet-connected box designed for those few seconds between asking yourself, ‘is this an earthquake’ and saying, ‘yeah, this is totally an earthquake’. Inside this wall-mounted box is both a sensitive vibration sensor and a microcontroller connected to the Internet. If the vibration sensor goes off, it checks the Internet — the USGS website is a great start, by the way — for any large, local earthquakes. If there’s a possibility that shaking is an earthquake, lights and sirens go off, telling you to take cover.

The idea of an ‘earthquake warning device’ isn’t new. The USGS has a system in place for just this sort of thing. It’s good to see independent researchers working on this, though, and it makes for a great entry to the Hackaday Prize.

Hackaday Prize Entry : Cosmic Particle Detector Is Citizen Science Disguised As Art

Thanks to CERN and their work in detecting the Higgs Boson using the Large Hadron Collider (LHC), there has been a surge of interest among many to learn more about the basic building blocks of the Universe. CERN could do it due to the immense power of the LHC — capable of reaching a beam energy of almost 14TeV. Compared to this, some cosmic rays have energies as high as 3 × 1020 eV. And these cosmic rays keep raining down on Earth continuously, creating a chain reaction of particles when they interact with atmospheric molecules. By the time many of these particles reach the surface of the earth, they have mutated into “muons”, which can be detected using Geiger–Müller Tubes (GMT).

[Robert Hart] is building an array of individual cosmic ray detectors that can be distributed across a landscape to display how these cosmic rays (particles, technically) arrive as showers of muons. It’s a citizen science project disguised as an art installation.

The heart of each individual device will be a set of three Russian Geiger–Müller Tubes to detect the particles, and an RGB LED that lights up depending on the type of particle detected. There will also be an audio amplifier driving a small 1W speaker to provide some sound effects. A solar panel is used to charge the battery, which will feed the converters that generate the logic and high voltages required for the GMT array. The GMT signals pass through a pulse shaper and then through the logic gates, finally being amplified to drive the LEDs and the audio amplifier. Depending on the direction and order in which the particles pass through the GMT’s, the device will produce a bright flash of one of 4 colors — red, green, blue or white. It also triggers generation one of three musical notes — C, F, G or a combination of all three. The logic section uses coincidence detection, which has worked well for his earlier iterations. A coincidence detector is an AND logic which produces an output when two input events occur sufficiently close to each other in time. He’s experimented with several design versions, before settling on a trio of 555 monostable multivibrators to provide the initial pulse shaping, followed by some AND gates. A neat PCB design brings it all together.

While the prototypes are housed in wooden cases, he’s going to experiment with various enclosure and mounting options to see which works best — bollard lamp posts, spheres, something that hangs on a tree or tripod or is put in the ground like a paving block. Future prototypes and installations may include a software, pulse summing and solid-state detectors. Embedded below is a video of his current version of the detector, but there are several other interesting videos on his project page that are worth looking at. And if this has gotten you interested, check out this CERN brochure — LHC, The guide for a simple explanation of particle physics and information on the LHC.

Continue reading “Hackaday Prize Entry : Cosmic Particle Detector Is Citizen Science Disguised As Art”