3D Printed Braille Trainer Reduces Barrier To Entry

Accessibility devices are a wonder of modern technology, allowing people with various needs to interact more easily with the world. From prosthetics to devices to augment or aid someone’s vision or hearing, devices like these can open up many more opportunities than would otherwise exist. A major problem with a wide array of these tools is that they can cost a fortune. [3D Printy] hoped to bring the cost down for Braille trainers which can often cost around $1000.

Braille trainers consist of a set of characters, each with six pins or buttons that can be depressed to form the various symbols used in the Braille system. [3D Printy]’s version originally included six buttons, each with a set of springs, that would be able to pop up and down. After some work and real-world use, though, he found that his device was too cumbersome to be effective and redesigned the entire mechanism around flexible TPU filament, allowing him to ditch the springs in favor of indentations and buttons that snap into place without a dedicated spring mechanism.

The new design is modular, allowing many units to be connected to form longer trainers than just a single character. He’s also released his design under the Creative Commons public domain license, allowing anyone to make and distribute these tools as they see fit. The design also achieves his goal of dramatically reducing the price of these tools to essentially just the cost of filament, provided you have access to a 3D printer of some sort. If you need to translate some Braille writing and don’t want to take the time to learn this system, take a look at this robotic Braille reader instead.

Thanks to [George] for the tip!

Continue reading “3D Printed Braille Trainer Reduces Barrier To Entry”

Vibrating Braille Display Is Portable

Smartphones are an integral part of life, but what if you can’t see the screen? There is text-to-speech available, but that’s not always handy and can be slow. It also doesn’t help users who can’t hear or see. Refreshable braille devices are also available, but they are expensive and not very convenient to use. [Bmajorspin] proposed a different method and built a prototype braille device that worked directly with a cell phone. The post admits that as the device stands today, it isn’t a practical alternative, but it does work and is ripe for future development to make it more practical.

The device saves costs and increases reliability by using six vibration motors to represent the six dots of a braille cell. However, this leads to an important issue. The motor can’t directly mount to the case because you have to feel each one vibrating individually. A spring mounting system ensures that each motor only vibrates the tactile actuator it is supposed to. However, the system isn’t perfect, and fast output is difficult to read due to the spread of vibrations.

Continue reading “Vibrating Braille Display Is Portable”

Robot Can Read Braille Much Faster Than Humans With New Sensor

Braille is a method of physical writing used to allow humans to read by touch — most commonly used as a substitute for printed text by those who may be visually impaired. Both displaying Braille and reading it is difficult to do with machines, but there has been a development in the latter area. A research team has trained a robot to read Braille at a speed far exceeding humans.

The robot was developed by a team at the University of Cambridge. Rather than trying to read Braille by touch, it instead uses a camera and an image recognition algorithm to do the job. Their solution is a bit ironic in a way, given the purpose Braille was created for. The robot can quickly sweep across a Braille display, working at a rate of up to 315 words per minute at 87% accuracy. That’s roughly twice as fast as a human reading Braille, with a similar level of accuracy. Some nifty de-blurring algorithms were needed to achieve this speed from the camera’s video feed.

We’ve also seen some impressive development on the other side of all those little bumps, with two Braille devices taking home awards during the final Hackaday Prize in 2023.
Continue reading “Robot Can Read Braille Much Faster Than Humans With New Sensor”

Hackaday Prize 2023: Low Cost Braille Embosser From 3D Printer Parts

The limited availability of texts transcribed to Braille and the required embossing equipment is a challenge world wide, but especially in poorer countries. To alleviate this problem, a team makers from in Cameroon have been developing BrailleRAP, an open source Braille embosser.

BrailleRAP is built built using commonly available 3D printer components, printed parts, and a laser-cut acrylic or wood frame. Paper is fed between a pair of carriages, the bottom one punching dots with a solenoid while the other acts as the anvil. Sheets of paper are fed in one or two at a time with stepper controlled rollers to control the position. At a cost of about $250, it is about a tenth of the price of the cheapest commercial solution, and the team have created excellent documentation so anyone can build it.

BrailleRAP was inspired by BRAIGO, another Hackaday-featured embosser assembled LEGO Mindstorm parts. We also featured another simple, but ingenious handheld embosser for portable use.

Continue reading “Hackaday Prize 2023: Low Cost Braille Embosser From 3D Printer Parts”

DIY Braille Embosser Is Really Impressive

We weren’t surprised to learn that Braille tools are quite expensive. But it’s interesting to hear that there’s another class of tools altogether, and they are very cheap and imprecise. In devising the Braille Embossing Experience, aka BEE, [alatorre] sought to find an open-source middle ground. We think they succeeded marvelously.

Another surprising thing — while handheld embossers do exist, there is no system for filling out an A4 sheet of paper, say, to write a letter.

For Braille to be readable, the characters and lines must be properly spaced, and this requires some kind of moveable type-like device to correctly register the characters onto paper. BEE fills this void as well. The amazing thing is, there’s not much more to it than a marked-up piece of aluminum and some clever 3D printing.

There are two parts to this system — the positioning rail, which includes a landing box for the embosser with six holes in the bottom. The other part is a pair of embossers, one for letters A-M, and another for letters N-Z. To use BEE, just slide the rail to the right and start embossing letters right to left, then flip the paper over when finished.

Need to create something more permanent? Make a Braille PCB.

Braille Keyboard Finds Its Voice

If you have a serious visual impairment, using a computer isn’t easy. [Dhiraj] has a project that allows people fluent in Braille to use that language for input. In addition to having a set position for fingers, the device also reads the key pressed as you type. With some third party software it is possible to even create Word documents, according to [Dhiraj].

You can see the finished product in the video below. This is one of those projects where the idea is the hardest part. Reading six buttons and converting them into characters is fairly simple. Each Braille character uses a cell of six bumps and the buttons mimic those bumps (although laid out for your fingers).

Continue reading “Braille Keyboard Finds Its Voice”