The Spirit Of The 80s Lives On In A MIDI Harmonica

In the 1980s, there was a synthesizer that you could play like a harmonica. This device was called the Millioniser 2000. It utilized HIP (Harmonica In Principle) technology. The Millioniser 2000 was a breath controller wrapped in chrome-colored plastic embossed with its logo in an odd, pre-vaporwave aesthetic, and connected to a gray and green sheet metal enclosure loaded up with DIN jacks. The Millioniser 2000 is absolutely the pinnacle of late 70s, early 80s design philosophy. If it were painted brown, the Universe would implode.

Because of the rarity and downright weirdness of a harmonica synthesizer from the 80s, prices on the used market are through the roof. Musicians are a weird bunch. However, this does give someone the opportunity to recreate this bizarre instrument, and that’s exactly what [John Lassen] did for his entry for the Hackaday Prize.

While this isn’t as complex as the Millioniser 2000, it does have the same basic user interface. There’s a pressure sensor that measures how much you’re blowing. There’s a slider to change which notes are played, and there are a few buttons to change parameters, like the MIDI channel, a midi controller, or a transpose function. The electronics, like so many of the entries to the Musical Instrument Challenge in the Hackaday Prize, are built around the Teensy and it’s incredible audio library.

The Incredible Judges Of The Hackaday Prize

The time to enter The Hackaday Prize has ended, but that doesn’t mean we’re done with the world’s greatest hardware competition just yet. Over the past few months, we’ve gotten a sneak peek at over a thousand amazing projects, from Open Hardware to Human Computer Interfaces. This is a contest, though, and to decide the winner, we’re tapping some of the greats in the hardware world to judge these astonishing projects.

Below are just a preview of the judges in this year’s Hackaday Prize. We’re sending the judging sheets out to them, tallying the results, and in less than two weeks we’ll announce the winners of the Hackaday Prize at the Hackaday Superconference in Pasadena. This is not an event to be missed — not only are we going to hear some fantastic technical talks from the hardware greats, but we’re also going to see who will walk away with the Grand Prize of $50,000.


Mitch Altman

Mitch’s early claim to fame is inventing the TV-B-Gone, a device that is so devious it got several Gizmodo reporters banned from CES for life. I suppose the idea was to punish those Gizmodo reporters, but as we all know being banned from CES is a blessing in disguise. Mitch has been published in Make Magazine, 2600, and is a mentor at the HAX accelerator. He is the co-founder of Noisebridge, the legendary San Francisco hackerspace, president and CEO of Cornfield Electronics, and makes his way around to various hacker gatherings where he’s always more than eager to teach people the ins and outs of electronics, soldering, and teaching cool things.

Chris from Clickspring

Clickspring, or Chris as he’s called by people IRL, has made his mark by being one of the best machinist channels on YouTube. Chris began making videos several years ago by recreating a brass clock in his home machine shop. Over the course of several months and millions of views on YouTube, Chris delved deep into the technology of making a clock out of brass stock using the most minimal machine tools. Currently, Chris is working on a multi-part video series where he’s constructing a replica of the Antikythera Mechanism using only technology that would have been available to a Greek engineer around the year 100 BC. This is, simply, one of the greatest feats of experimental archaeology, and it’s happening right now on Chris’ YouTube channel.

Kristin Paget

Kristin ‘Hacker Princess’ Paget is currently working at Lyft designing security systems for self-driving cars and futzing about with wireless security. For fun, she builds IMSI catchers and RFID cloners, and has given talks at the Hackaday Superconference about the laws of IoT Security and at Shmoocon about how terrible contactless credit cards actually are. When it comes to wireless security, Kristin is who you want to talk to, and she was instrumental in getting the FBI off my back that one time.

Ayah Bdeir

Ayah Bdier is the founder and CEO of littleBits, an award-winning platform of easy-to-use electronic building blocks that are empowering kids everywhere to create inventions large and small. Bdeir is an engineer, interactive artist, and one of the cofounders of the Open Hardware Summit. An alumna of the MIT Media Lab, Bdeir was named a TED Senior Fellow in 2013. She’s been featured on CNBC for building the future with next-generation toys, and talking about the importance of providing children with educational and gender-neutral toys.

 

These are just a few of the amazingly accomplished judges we have lined up to determine the winner of this year’s Hackaday Prize. The winner will be announced on November 3rd at the Hackaday Superconference. There are still tickets available, but if you can’t make it, don’t worry. We’re going to be live streaming everything, including the prize ceremony, where one team will walk away with the grand prize of $50,000. It’s not an event to miss.

The Polyphonic Analog/Digital Synth Project

[Matt Bradshaw]’s entry in the Hackaday Prize is Polymod, a modular digital synthesizer which combines the modularity of an analog synth with the power of a digital synth. Each module (LFO, Envelope Generator, Amplifier, etc.) are connected with audio cables to others and the result is processed digitally to create music.

The synth is built with a toy keyboard with each key having a tactile switch underneath it, contained inside a wooden case upcycled from a bookshelf found on the street. Each module is a series of potentiometers and I/O jacks with a wooden faceplate. The modules are connected to sockets on the main board and are held in place with thumbscrews so that the modules can be easily switched out. Each module can be connected to others using audio cables, the same way modular analog synths are connected.

The main board contains a Teensy 3.6 and a Teensy Audio Adapter creates the audio for the synth. Software that [Matt] wrote runs on the Teensy and allows the digital synthesizer to run in either monophonic or polyphonic modes. In polyphonic mode, the software creates digital copies of each module to allow the playing of chords. The Teensy scans up to eight module sockets and for each module that it finds, it reads the potentiometer value as well as the status of the I/O jacks. The keyboard buttons are converted to a control voltage which can be sent to any of the modules to create a melody.

[Matt] has created a great synth that combines benefits of both analog and digital synths together and the result is an inexpensive modular synth that can create some really cool sounds. Check out the videos after the break. In the meantime, take a look at this mess of wires and this article on a slew of open-source synthesizers.

Continue reading “The Polyphonic Analog/Digital Synth Project”

Finally, An Open Source MIDI Foot Controller

MIDI has been around for longer than most of the readers of Hackaday, and you can get off my lawn. In spite of this, MIDI is still commonly used in nearly every single aspect of musical performance, and there are a host of tools and applications to give MIDI control to a live performance. That said, if you want a MIDI foot controller, your best bet is probably something used from the late 90s, although Behringer makes an acceptable foot controller that doesn’t have a whole bunch of features. There is obviously a need for a feature packed, Open Source MIDI foot controller. That’s where the Pedalino comes in. It’s a winner of the Musical Instrument Challenge in this year’s Hackaday Prize, and if you want a MIDI foot controller, this is the first place you should look.

With the Pedalino, you can change the presets of your guitar rig, turn old MIDI equipment into something that’s USB-compatible, give you hands-free or foot-occupied ways to control your rig during a live performance, and it can be expanded with WiFi or Bluetooth. This is a full-featured MIDI controller, with three user profiles, and it can control a maximum of 48 foot switches. That’s an impressive amount of kit for such a small device; usually you’d have to spend hundreds or even thousands of dollars for a simple MIDI controller, and the Pedalino does everything with very cheap hardware.

While the Pedalino is just in its prototype phase now, there is obviously a market for a feature-packed MIDI foot controller. It might just be a breadboard and a Fritzing diagram, but there’s significant work being done on the software side, and we’re looking forward to this being stuffed into a gigantic aluminum enclosure and velcroed to a pedal board.

Can You Build An Open Source Pocket Operator?

Toys are now musical instruments. Or we’ll just say musical instruments are now toys. You can probably ascribe this recent phenomenon to Frooty Loops or whatever software the kids are using these days, but the truth is that it’s never been easier to lay down a beat. Just press the buttons on a pocket-sized computer.

One of the best examples of the playification of musical instruments is Pocket Operators from Teenage Engineering. They’re remarkable pieces of hardware, and really just a custom segment LCD and a few buttons. They also sound great and you can play real music with them. It’s a game changer when it comes to enabling musicianship.

Of course, with any popular platform, there’s a need for an Open Source copy. That’s where [Chris]’ Teensy Beats Shield comes in. It’s a ‘shield’ of sorts for a Teensy microcontroller that adds buttons, knobs, and a display, turning this into a platform that uses the Teensy’s incredible audio system designer.

When it comes to the world of microcontrollers and audio processing, the Teensy is a champ. The Teensy Audio Library has polyphonic playback, recording, synthesis, analysis, and effects, along with multiple simultaneous inputs and outputs. If you’re building a tiny synth that can fit in your pocket, the Teensy is the way to go, and [Chris]’ Teensy Beats Shield does it all, with a minimal and useful user interface. You can check out a video of the Teensy Beats Shield below.

Continue reading “Can You Build An Open Source Pocket Operator?”

Hacking Nature’s Musicians

We just wrapped up the Musical Instrument Challenge in the Hackaday Prize, and for most projects that meant replicating sounds made by humans, or otherwise making musicians for humans. There’s more to music than just what can be made in a DAW, though; the world is surrounded by a soundscape, and you only need to take a walk in the country to hear it.

For her Hackaday Prize entry, [Kelly] is hacking nature’s musicians. She’s replicating the sounds of the rural countryside in transistors and PCBs. It’s an astonishing work of analog electronics, and it sounds awesome, too.

The most impressive board [Kelly] has been working on is the Mother Nature Board, a sort of natural electronic chorus of different animal circuits. It’s all completely random, based on a Really, Really Random Number Generator, and uses a collection of transistors and 555 timers to create pulses sent to a piezo. This circuit is very much sensitive to noise, and while building it [Kelly] found that not all of her 2N3904 transistors were the same; some of them worked for the noise generator, some didn’t. This is a tricky circuit to design, but the results are delightful.

So, can analog electronics sound like a forest full of crickets? Surprisingly, yes. This demonstration shows what’s possible with a few breadboards full of transistors, caps, resistors, and LEDs. It’s an electronic sculpture of the sounds inspired by the nocturnal soundscape of rural Virginia. You’ve got crickets, cicadas, katydids, frogs, birds, and all the other non-human musicians in the world. Beautiful.

An Open Controller For Woodwind Instruments

Engineers, hackers, and makers can most certainly build a musical gadget of some kind. They’ll build synths, they’ll build aerophones, and they’ll take the idea of mercury delay line memory, two hydrophones, and a really long tube filled with water to build the most absurd delay in existence. One thing they can’t seem to do is build a woodwind MIDI controller. That’s where [J.M.] comes in. He’s created the Open Woodwind Project as an open and extensible interface that can play sax and clarinet while connected to a computer.

Early prototype to test out variable resistive pressure pads

If you want to play MIDI, there are plenty of options for keyboards, drum sets, matrix pads, and even strings. If you want to play a MIDI saxophone, there aren’t many options. Keytars, for example, are more popular than MIDI woodwind controllers. [J.M.] is changing this with a MIDI controller that recreates electronic aerophones electronically.

The controller itself uses a Teensy 3.2 loaded up with an ARM Cortex M4, two MPR121 touch controllers for 24 channels of capacititve touch capability, and a pressure sensor to tell the computer how strong the user is blowing. All of this works, and [J.M.] has a few videos showing off the capabilities of his homemade controller. It’s a great piece of work, and there are a few extentions that make this really interesting: there’s the possibility of adding CV out so it can be connected to modular synths, and the addition of accelerometers to the build makes for some very interesting effects.

Check out the video below.

Continue reading “An Open Controller For Woodwind Instruments”