Propane-Powered Plasma Rifle

It may not be a “phased plasma rifle in the 40-watt range,” and it doesn’t even use plasma in the strict definition, but it’s pretty cool nonetheless. It’s a propane-powered bottle-launching rifle, and it looks like a lot of fun.

[NighthawkInLight] sure likes things that go pop, like his watermelon-wasting air-powered cannon and cheesy-poof pop gun. This one has a little more oomph to it, powered as it is by a propane torch. The principle is simple: fill a soda bottle with propane, ignite the gas, fun ensues. The details are a little more subtle, though, and allowances need to be made to keep back pressure from preventing the projectile from filling with fuel. [NighthawkInLight] overcomes this with some clever machining of the barrel. The final production version in the video below is needlessly but delightfully complex, with a wooden stock and a coil of clear vinyl tubing helical plasma accumulator before the barrel; the last bit is just for show, and we have to admit that it looks pretty good.

Unless you count the pro tip on using CPVC pipe to make custom fittings, this one is nothing but fun. But we don’t have a problem with that.

Continue reading “Propane-Powered Plasma Rifle”

Follow the Bouncing Ball of Entropy

When [::vtol::] wants to generate random numbers he doesn’t simply type rand() into his Arduino IDE, no, he builds a piece of art. It all starts with a knob, presumably connected to a potentiometer, which sets a frequency. An Arduino UNO takes the reading and generates a tone for an upward-facing speaker. A tiny ball bounces on that speaker where it occasionally collides with a piezoelectric element. The intervals between collisions become our sufficiently random number.

The generated number travels up the Rube Goldberg-esque machine to an LCD mounted at the top where a word, corresponding to our generated number, is displayed. As long as the button is held, a tone will continue to sound and words will be generated so poetry pours forth.

If this take on beat poetry doesn’t suit you, the construction of the Ball-O-Bol has an aesthetic quality that’s eye-catching, whereas projects like his Tape-Head Robot That Listens to the Floor and 8-Bit Digital Photo Gun showed the electronic guts front and center with their own appeal.

Continue reading “Follow the Bouncing Ball of Entropy”

A Cool Mist that Dries Your Clothes

This one is both wild enough to be confused as a conspiracy theory and common sense enough to be the big solution staring us in the face which nobody realized. Until now. Oak Ridge National Laboratory and General Electric (GE), working on a grant from the US Department of Energy (DOE), have been playing around with new clothes dryer technology since 2014 and have come with something new and exciting. Clothes dryers that use ultrasonic traducers to remove moisture from garments instead of using heat.

If you’ve ever seen a cool mist humidifier you’ll know how this works. A piezo element generates ultrasonic waves that atomize water and humidify the air. This is exactly the same except the water is stored in clothing, rather than a reservoir. Once it’s atomized it can be removed with traditional air movement.

This is a totally obvious application of the simple and inexpensive technology — when the garment is laying flat on a bed of transducers. This can be implemented in a press drying system where a garment is laid flat on a bed or transducers and another bed hinges down from above. Poof, your shirt is dry in a few seconds.

But individual households don’t have these kinds of dryers. They have what are called drum dryers that spin the clothes. Reading closely, this piece of the puzzle is still to come:

They play [sic] to scale-up the technoloogy to press drying and eventually a clothes dryer drum in the next five months.

We look at this as having a similar technological hurdle as wireless electricity. There must be an inverse-square law on the effect of the ultrasonic waves to atomize water as the water moves further away from the transducers. It that’s the case, tranducers on the circumference of a drum would be inefficient at drying the clothing toward the center. This slide deck hints that that problem is being addressed. It talks about only running the transducers when the fabric is physically coupled with the elements. It’s an interesting application and we hope that it could work in conjunction with traditional drying methods to boost energy savings, even if this doesn’t pan out as a total replacement.

With a vast population, cost adds up fast. There are roughly 125 M households in the United States and the overwhelming majority of them use clothes dryers (while many other parts of the world have a higher percentage who hang-dry their clothing). The DOE estimates $9 billion a year is spent on drying clothes in the US. Reducing that number by even 1/10th of 1% will pay off more than tenfold the $880,000 research budget that went into this. Of course, you have to outfit those households with new equipment which will take at least 8-12 years through natural attrition, even if ultrasonics hit the market as soon as possible.

Continue reading “A Cool Mist that Dries Your Clothes”

Raspberry Pi-Based Game Boy Emulator

The most popular use for a Raspberry Pi, by far, is video game emulation. We see this in many, many forms from 3D printed Raspberry Pi cases resembling the original Nintendo Entertainment System to 3D printed Raspberry Pi cases resembling Super Nintendos. There’s a lot of variety out there for Raspberry Pi emulation, but [moosepr] is taking it to the next level. He’s building the smallest Pi emulation build we’ve ever seen.

This build is based on the Pi Zero and a 2.2″ (0.56 dm) ili9341 TFT display. This display has a resolution of 240×320 pixels, which is close enough to the resolution of the systems the Pi Zero can emulate. The Pi Zero and display are attached to a beautiful purple breakout board (shared on OSH Park) along with a few 5-way nav switches, a charger for a Lipo battery, and a few other bits and bobs.

Right now, [moosepr] is experimenting with adding sound to his board. It’s easy enough to get sound out of a Pi Zero — it’s just PWM coming from a few pins — but audio also needs an amp, a speaker, and more space on the board. To solve this problem, [moose] found a few piezo transducers from musical greeting cards. These are designed to be thin and as loud as possible, and attaching these directly to the PWM pins providing audio might just work. This is a project to keep an eye on, if only to see if cheap piezos work for low-fi audio in retro emulators.

3D Print Your E-Drum Pads

The concept behind DIY electronic drum kits is fairly simple — small piezoelectric elements are used to generate a voltage when the drumpads are struck. That’s easy enough, but the mechanical design can be a difficult problem to approach. To solve that, [ryo.kosaka.10] decided to design an E-drum pad made with paper & 3D printed parts.

As far as E-drum triggers go, it follows the basic rules — a piezo element used as a trigger with some foam used for damping. For the striking surface, a Tama-brand mesh drum head is used. Being an off-the-shelf drum head, it has a good feel and playability. But the shell is where the creativity really shines through. While the top and bottom parts are 3D printed in the usual way, the main shell of the drum is made with several layers of thick paper laminated together with glue. This creates a surprisingly strong, sturdy shell and is also much faster and less wasteful than waiting for a similar part to 3D print.

To round out the guide, instructions are given on how to wire the piezo triggers up for either a regular E-drum sound module or an Arduino. It’s a nice touch, as those inexperienced with E-drums may not be entirely familiar with how they work – this way, anyone can give the project a try.

Keen for something bigger? Back in 2014 we saw this awesome 5-piece e-drum kit built out of buckets.

Controlling This Smartwatch is All in the Wrist

Smartwatches are pretty great. In theory, you’ll never miss a notification or a phone call. Plus, they can do all kinds of bio-metric tracking since they’re strapped to one of your body’s pulse points. But there are downsides. One of the major ones is that you end up needing two hands to do things that are easily one-handed on a phone. Now, you could use the tip of your nose like I do in the winter when I have mittens on, but that’s not good for your eyes. It seems that the future of smartwatch input is not in available appendages, but in gesture detection.

Enter WristWhirl, the brain-child of Dartmouth and University of Manitoba students [Jun Gong], [Xing-Dong Yang], and [Pourang Irani]. They have built a prototype smartwatch that uses continuous wrist movements detected by IR proximity sensors to control popular off-the-shelf applications. Twelve pairs of dirt-cheap IR sensors connected to an Arduino Due detect any of eight simple gestures made by the wearer to do tasks like opening the calendar, controlling a music player, panning and zooming a map, and playing games like Tetris and Fruit Ninja. In order to save battery, a piezo senses pinch between the user’s thumb and forefinger and uses this input to decide when to start and stop gesture detection.

According to their paper (PDF warning), the gesture detection is 93.8% accurate. To get this data, the team had their test subjects perform each of the eight gestures under different conditions such as walking vs. standing and doing either with the wrist in watch-viewing position or hanging down at their side. Why not gesture your way past the break to watch a demo?

If you’re stuck on the idea of playing Tetris with gestures, there are other ways.

Continue reading “Controlling This Smartwatch is All in the Wrist”

Pulling Music Out Of The Airwaves

RADIO WONDERLAND is a one-man band with many famous unintentional collaborators. [Joshua Fried]’s shows start off with him walking in carrying a boombox playing FM radio. He plugs it into his sound rig, tunes around a while, and collects some samples. Magic happens, he turns an ancient Buick steering wheel, and music emerges from the resampled radio cacophony.

It’s experimental music, which is secret art-scene-insider code for “you might not like it”, but we love the hacking. In addition to the above-mentioned steering wheel, he also plays a rack of shoes with drumsticks. If we had to guess, we’d say rotary encoders and piezos. All of this is just input for his computer programs which take care of the sampling, chopping, and slicing of live radio into dance music. It’s good enough that he’s opened for [They Might Be Giants].

Check out the videos (embedded below) for a taste of what a live show was like. There are definitely parts where the show is a little slow, but they make it seem cooler when a beat comes together out of found Huey Lewis. We especially like the “re-esser” routine that hones in on the hissier parts of speech to turn them into cymbals. And if you scan the crowd in the beginning, you can find a ten-years-younger [Limor Fried] and [Phil Torrone].

Continue reading “Pulling Music Out Of The Airwaves”