DIY Music Controllers For Raging With Machines

[Tristan Shone], aka Author & Punisher, found a way to make industrial music even heavier. This former mechanical engineer from Boston crafted his one-man band in the university fab labs of Southern California while pursing an art degree. He started machining robust custom MIDI controllers that allow him to get physical while performing, instead of hunching over tiny buttons and trying to finesse microscopic touch pad-style pitch sliders.

Starting about ninety seconds into the video after the break, [Tristan] explains his set up and walks through each of his handmade controllers, all of which are built on Arduinos and Raspberry Pis.

Our favorite is probably Grid Iron, because it looks like the most fun. Grid Iron is a rhythm controller that works by running back and forth and side-to-side over a grid of machined textures that act like speed bumps. A spring-loaded stylus picks up the textures, and an encoder translates them to sound. Eight buttons along the 3D-printed pistol grip let [Tristan] make changes on the fly.

Tired of twiddling tiny knobs, [Tristan] made Big Knobs, a set of three solid aluminum knobs that look to be 3-4″ in diameter. These are assigned jobs like delay and filter, and their weight combined with ball bearings allows them to spin almost indefinitely while [Tristan] injects other sounds into the mix.

[Tristan] has made a few custom microphones to make the most of his voice. One is a trachea mic made from four piezos strapped to his throat that picks up every possible vocal utterance and other guttural sounds quite nicely. The other is an 8-pack of mics built into a curved metal box. He can assign a different effect to each one and do things like turn a breathy scream into the sounds of swelling cymbals.

There are more machines not covered in the video, and you can read about those on [Tristan]’s site. In a bonus video after the break, [Tristan] discusses a trio of pneumatically-driven mask controllers he made.

Don’t have a machine shop at your disposal? Dig out that fidget spinner and get moving on your own MIDI controller.

Continue reading “DIY Music Controllers For Raging With Machines”

Build This Handy Leak Detector For $1.02

You’ve probably noticed that modern life has become rather complicated, and the projects we cover here on Hackaday have not been immune to the march of progress. We certainly aren’t complaining, but we’ll admit to the occasional wistful daydream of returning to the days when the front page of Hackaday looked more MacGyver than Microsoft.

Which is precisely why this hacked together water alarm from [dB] is so appealing. Dubbed the “SqueakyLeaks”, this gadget started its life as a simple wireless intruder alarm from the Dollar Tree. When the magnet got far enough from the battery-powered base, a 90 dB warble would kick in and let you know somebody had opened a window or a door they shouldn’t have.

But with a little rewiring and two Canadian pennies serving as contacts, the alarm has been converted to a water detector that can be placed around potential leaky appliances like the water heater or in areas where you want to be alerted to water accumulation such as sumps. They’re basically “set and forget”, as [dB] says the three LR44 batteries used in the alarms should last about two years. Though with a BOM of $1.02 CAD, it’s probably cheaper to just make multiples and throw them out when the batteries die. Continue reading “Build This Handy Leak Detector For $1.02”

3D Printer Emission Monitor Quantifies The Stench

While we don’t yet know the long-term effects of hanging out around 3D printers, it doesn’t take a in-depth study to figure out that their emissions aren’t healthy. What smells toxic usually is toxic. Still, it’s oh-so-fun to linger and watch prints grow into existence, even when we have hundreds or thousands of hours of printing under our belts.

Most of us would agree that ABS stinks worse than PLA, and that’s probably because it releases formaldehyde when melted. PLA could be viewed as slightly less harmful because it has a lower melting point, and more volatile organic compounds (VOCs) are released at higher temperatures. Though we should probably always open a window when printing, human nature is a strong force. We need something to save us from our stubbornness, and [Gary Peng] has the answer: a smart 3D printer emission monitor.

The monitor continually checks the air quality and collects data about VOC emissions. As the VOCs become elevated during printing, the user is notified with visual, audio, and phone notifications. Green means you’re good, yellow means open a window, red means GTFO. There’s a brief demo after the break that also shows the phone interface.

The heart of this monitor is a CCS811 gas sensor, which provides VOC data to a Particle Photon. [Gary] built a simple Blynk interface to handle the alerts and graph historical VOC readings. He’s got the code and STLs available, so let this be the last time you watch something print in blissful semi-ignorance.

Concerned about air quality in general? Here’s a standalone portable monitor designed to quantify the soul-crushing stuffiness of meetings.

Continue reading “3D Printer Emission Monitor Quantifies The Stench”

Play To The Beat Of This Robotic Drummer In A Box

No drummer? No problem! With a little ingenuity, you can stuff the essentials of a drum kit into a box, and automate your rhythm section.

Mind you, [Franco Molina]’s “DrumCube” doesn’t quite have the flash of a human drummer, but it does keep a steady beat and has a charm of its own. The drum machine is mostly mechanical, reminding us somewhat of the Wintergatan Marble Machine which is as captivating to watch as it is to hear. The DrumCube has a snare drum played by two servo-controlled sticks, a kick drum using foam waggled back and forth between two piezo transducers hooked to a low-pass filter, and a reverse-biased transistor white noise generator used for the hi-hat. Sadly, the large gear appears to be just for show. An Arduino runs everything and makes sure the mechanical drum hits are synced to the electronic cymbals, which was no mean feat.

The video below shows it in action accompanying [Franco] on his guitar, and it looks as good as it sounds.¬†Prefer a more compact, all-electronic drum kit? Here’s one that fits in your pocket.

Continue reading “Play To The Beat Of This Robotic Drummer In A Box”

Piezoelectric Crystals Explained

Summer in the Northern hemisphere means outdoor cooking. Matches are old school, and you are more likely to use a piezoelectric lighter to start your grill. [Steve Mould] has one, but he didn’t understand the physics behind why it works, so he decided to do the research and share it in a video.

The first two minutes is a recap of things you already know. But after that [Steve] gets into the crystal lattice structure of quartz. Using some computer animations and some peanut butter lids he shows you exactly why compressing the crystal generates electricity.

Continue reading “Piezoelectric Crystals Explained”

Piezoelectric Antennas For Very, Very Low Frequencies

If you want to talk about antennas, the amateur radio community has you covered, with one glaring exception. Very low frequency and Extremely Low Frequency radio isn’t practiced very much, ultimately because it’s impractical and you simply can’t transmit much information when your carrier frequency is measured in tens of Hertz. There is more information on Extremely Low Frequency radio in Michael Crichton’s Sphere than there is in the normal parts of the Internet. Now there might be an easier way to play with VLF radiation, thanks to developers at the National Accelerator Laboratory. They’ve developed a piezoelectric transmitter for very long wavelengths.

Instead of pushing pixies through an antenna, this antenna uses a rod-shaped crystal of lithium niobate, a piezoelectric material. An AC voltage is applied to the rod makes it vibrate, and this triggers an oscillating electric current flow that’s emitted as VLF radiation. The key is that it’s these soundwaves bouncing around that define the resonant frequency, and the speed of sound in lithium niobate is a lot slower than the speed of light, but they’re translated into electric signals because of its piezoelectricity. For contrast, if this were a wire quarter-wave antenna it would be tens of kilometers long.

The application for this sort of antenna is ideally for where regular radio doesn’t work. Radio doesn’t work underwater, but nuclear subs trail an antenna out of the back to receive messages using Extremely Low Frequency radio. A walkie talkie doesn’t work in a mine, and this could potentially be used there. There is a patent for this piezoelectric antenna, so if anyone knows of a source of lithium niobate, put a link in the comments.

We’ve seen this trick before to make small antennas even smaller, but this is the first time we’ve seen it used in the VLF band, where it’s arguably even more impressive.

Hacking Nature’s Musicians

We just wrapped up the Musical Instrument Challenge in the Hackaday Prize, and for most projects that meant replicating sounds made by humans, or otherwise making musicians for humans. There’s more to music than just what can be made in a DAW, though; the world is surrounded by a soundscape, and you only need to take a walk in the country to hear it.

For her Hackaday Prize entry, [Kelly] is hacking nature’s musicians. She’s replicating the sounds of the rural countryside in transistors and PCBs. It’s an astonishing work of analog electronics, and it sounds awesome, too.

The most impressive board [Kelly] has been working on is the Mother Nature Board, a sort of natural electronic chorus of different animal circuits. It’s all completely random, based on a Really, Really Random Number Generator, and uses a collection of transistors and 555 timers to create pulses sent to a piezo. This circuit is very much sensitive to noise, and while building it [Kelly] found that not all of her 2N3904 transistors were the same; some of them worked for the noise generator, some didn’t. This is a tricky circuit to design, but the results are delightful.

So, can analog electronics sound like a forest full of crickets? Surprisingly, yes. This demonstration¬†shows what’s possible with a few breadboards full of transistors, caps, resistors, and LEDs. It’s an electronic sculpture of the sounds inspired by the nocturnal soundscape of rural Virginia. You’ve got crickets, cicadas, katydids, frogs, birds, and all the other non-human musicians in the world. Beautiful.