SCARA Arm Becomes Enormous 3D Printer

SCARA

When you find an old, disused 80s-era SCARA arm in a lab, there’s really not much more you can do than make a giant 3D printer with it.

The last time we saw [Dane]’s salvaged SCARA arm, he had reconstructed the electronics by building his own servo motor controllers and feedback sensors. There were a few initial test prints, but the new upgrades to this printer make it much more useful, make it look even more kludged together, and made the prints even more accurate.

The largest upgrade to the new machine is an updated heated build plate. The previous plate used six 30W resistors. Good enough, but with two additional 245W membrane heaters, [Dane] can now keep his build plate at a constant 65 degrees C. Keeping such a large area warm requires a heated build chamber, so [Dane] came up with a giant semi-hexagonal box of warm made from aluminum extrusion, laser-cut parts, and acrylic frames.

Compared to earlier prints, the SCARA arm is printing some very nice parts including a battery holder for 40 LiFePO4 cells, and a beautiful propeller for a 3D printed boat. It’s an impressive build, made even more so by the fact this robotic arm was found during a lab cleanup.

Priceless Paintings – Scanned And Printed In 3D

painting

When we think of works by Van Gogh and Rembrandt, most of us remember a picture, but we aren’t accustomed to seeing the actual painting. [Tim Zaman], a scientist at Delft University of Technology in the Netherlands, realized that the material presence of the paint conveys meaning as well. He wanted to create a lifelike reproduction in full dimension and color. While a common laser-based technique could have been used for depth mapping, resolution is dependent on the width of the line or dot, and the camera cannot capture color data simultaneously with this method. In his thesis, [Tim] goes into great detail on a hybrid imaging technique involving two cameras and a projector. He and his team eventually used two 40-megapixel Nikon cameras in conjunction with a fringe projector to capture a topographical map with in-plane resolution of  50 μm, and depth resolution of 9.2 μm.

We can’t find a lot of information on the printing process they used, other than references to high-resolution 3D printers by Océ (a Canon company). That said, [Tim] has provided a plethora of images of some of the reproductions, and we have to say they look amazing. The inclusion of depth information takes this a big step further than that gigapixel scanning setup we saw recently.

Check out the BBC interview with Tim, as well as time lapse videos of the scanning and printing process after the break.

Continue reading “Priceless Paintings – Scanned And Printed In 3D”

World Maker Faire 2013: The Sub-$500 Deltaprintr

There are a few delta bot 3D printers out there such as the Rostock which, while being a very nice printer, is still a little expensive. When [Shai] from SUNY wanted to use a 3D printer for his artistic and academic pursuits, he decided to build his own printer. Thus the Deltaprintr was born.

Instead of printed parts, the Deltaprintr uses laser cut and machined parts for just about all of its bill of materials. The three motors mounted in the base are connected to the delta arms with Spectra fishing line, thus getting rid of the ludicrous cost of belts of the requisite length.

Everything is Open Source, and the guys behind the project should be putting their printr up on Kickstarter sometime next month. Word is the entire thing should be sub-$500, and a little bit of guessing tells me that doesn’t mean $499.

A $100 Stereolithography 3D Printer

The Hackaday tip line has been blowing up with a new Kickstarter for a 3D printer. Although this is a pretty common occurrence around here, this printer is actually very interesting: it’s quite possibly the simplest and cheapest laser resin printer ever.

Most of the 3D resin printers we’ve seen, like the Form1 use mechanical means to raise a print up to the next slice. At $100, the Peachy printer doesn’t have the budget for such luxuries as servos or motors, so the layer height is increased by dripping salt water over the liquid resin. The X and Y axes are controlled with mirrors and voice coils, allowing this printer’s electronics to be controlled by a computer’s sound card. It’s really amazing in its simplicity, and from the looks of it the Peachy can produce some fairly good prints.

For a great explanation of how the Peachy printer works, you can check out the video below.

Continue reading “A $100 Stereolithography 3D Printer”

Automatic Tool Changing On A 3D Printer

tool

[Luis] has a pretty interesting project on his hands. He’s using a delta 3D printer to plate a few edibles – yogurt, chocolate, and other thick liquids. Because he intends to use actual plates as the build surface, calibration is key. One solution to this problem would be to use identical, pre-measured plates for everything this printer makes. [Luis]’ solution is much more ingenious than that, however. He’s programmed his printer to automatically swap out two tools – one for probing the build surface, and another to extrude liquids.

The two tools are suspended from the body of the printer, and with a little bit of software it’s possible for them to be picked up by the head of the printer and held in place with a few magnets. After auto leveling the build surface in software, a G Code command switches the tools over to a paste extruder for all those delicious edibles.

If an automated tool changer isn’t enough, [Luis] has also completed a very nice 3D printed peristaltic pump to squirt out foodstuffs. You can check out a video of this printer in action below.

Continue reading “Automatic Tool Changing On A 3D Printer”

3D Printed Prosthetic Hand

hand

3D printing – with the promise of low-scale manufacturing and custom parts – is ideal for the prosthetic industry, but so far prosthetic hands have been a very, very hard nut to crack. [Joel] has been working on the Open Hands Project, a project that aims to make robotic prosthetics accessible to makers, researchers, and amputees alike.

Even though the mechanisms inside the hand are fairly simple – DC gear motors retracting steel cable ‘tendons’ – [Joel] was able to pack all this equipment into a very small volume that isn’t much bigger than real, meat-based hands. To actuate the mechanical muscles in the hand, the user simply flexes a few muscles in their forearm. These electrical signals are picked up by a suite of custom electronics and tell the Open Hand what to do

In [Joel]’s Indiegogo video, he goes over what makes his robohands work with a little help from [Liam Corbett], hand amputee. Aesthetically, the Open Hand is a big improvement over [Liam]’s two-pronged hook, and with the dexterity demonstrated in the video, possibly a lot more capable.

Continue reading “3D Printed Prosthetic Hand”

3D Printering: Electronics Boards

If you’re gearing up to build a 3D printer, one of the first things you’ll need to look at is your options for electronics boards. Whether you decide to optimize for cost or capability, the choices you make during the planning stages of your build will drastically affect what the final project will look like and how it will behave.

There are a ton of electronics boards out there, so for this installation of 3D Printering, we’re going to take a look at what’s available. Hit the link below to give Hackaday more pageviews read the rest.

Continue reading “3D Printering: Electronics Boards”