This Hack Can Refill Your Stratasys 3D Printer

[Dan] has his own Stratasys Dimension SST 768 3D printer. It’s a professional grade machine which does an amazing job. But when it comes time to replace the cartridge he has to pay the piper to the tune of $260. He can buy ABS filament for about $50 per kilogram, so he set out to refill his own P400 cartridges.

Respooling the cartridge must be quite easy because he doesn’t describe the process at all. But the physical act of refilling it doesn’t mean you can keep using it. The cartridge and the printer both store usage information that prevents this type of DIY refill; there’s an EEPROM in the cartridge and a log file on the printer’s hard drive. [Dan] pulled the hard drive out and used a Live CD to make an image. He loaded the image in a virtual machine, made some changes to enable SSH and zap the log file at each boot, then loaded the image back onto the printer’s drive. A script that he wrote is able to backup and rewrite the EEPROM chip, which basically rolls back the ‘odometer’ on how much filament has been used.

[Image Source]

Making Plastic Filament At Home

There’s one problem with the popularity of plastic-extruding 3D printers such as the RepRap and Makerbot; since they’ve become so popular, the price of plastic filament has skyrocketed over the past few years. Without a way to produce filament at a hackerspace or home lab, the price of 3D printed objects will remain fairly high. Project Spaghetti hopes to rectify that by building a machine to make plastic filament for 3D printers.

The folks behind Project Spaghetti – a loose amalgamation of makers going under the title of Open Source Printing, LLC – have successfully built a machine that is able to produce short lengths of plastic filament.

Early machines used a plunger to press small pellets of ABS plastic through a heated steel pipe to produce filament. There are a few problems with this approach, especially when the temperature is set to 480F, but the team was able to make a bit of filament with this design.

Although the team is using a piston to force melted plastic out of a nozzle, they do have a screw-drive ‘plan B’ in the works. This design should allow for continuous extrusion for theoretically endless reels of plastic filament, every RepRappers dream and a neat way to win 40 grand. Continue reading “Making Plastic Filament At Home”

3D Printer Control For The Raspi

Instead of dedicating his laptop to control his RepRap all night, [Walter] is using a Raspberry Pi as an Internet-enabled front end for his 3D printer.

Before [Walter] got his hands on a Raspberry Pi, he set up his laptop next to his RepRap and let the machine do its work for hours on end. Obviously, this tied up his laptop for a while so when his Raspi was delivered he was eager to offload the responsibilities of controlling a printer to his new Linux board.

Right now, [Walter] has his Raspberry Pi set up as a web interface able to control his printer similar to Pronterface. We have to note that the Raspberry Pi isn’t driving servos or feeding filament onto the bed; those responsibilities are still handled by the RepRap electronics, but the ability to use a 3D printer over the web is still pretty cool.

[Walter] is putting the finishing touches on his 3D printer web interface, after which he’ll upload everything onto the git. Planned features for future updates include uploading gcode from the web and an option to connect a webcam for visual feedback when controlling a remote printer.

Video demo after the break.

Continue reading “3D Printer Control For The Raspi”

Eventorbot 3D Printer

Tired of 3D printers that use t-slot construction? The Eventorbot is yet another open source 3D printer,  but it’s built out of steel and 3D printable parts. The design also aims to minimize the effect of vibrations by using a single solid frame. All of the wiring runs through the steel frame, which gives the printer a professional look.

The Eventorbot page on the RepRap wiki provides details on how to build your own, along with STL files for all the printable parts. If you want to see renders of the parts, they’re all available on Thingiverse. The material cost is $300-$500, and the assembled cost is quoted at $799.

Like many of the open source printers we’ve seen, this one uses the RepRap Mega Pololu Shield (RAMPS) to control the actuators. This is attached to a Sanguinololu motherboard, which runs the RepRap firmware.

The Eventorbot Youtube channel has a collection of videos detailing the assembly of the robot. Check out a video of a test print after the break.

Via Make

Continue reading “Eventorbot 3D Printer”

Zeppelin On The Fisher Price Record Player Now Thanks To A 3D Printer

[Fred Murphy] went ahead and revised his method of making custom records for a Fisher Price toy record player. He’s now able to 3D print the discs. The toy works much like a music box, with a comb in the “cartridge” of the record player and notches in the record that pluck the fingers of the comb as it turns. He had previously developed a subtractive method that let him mill records out of a solid piece of plastic. But this additive method means less waste.

The music creation portion of the project is the same as the previous version. That’s because it’s pretty hard to outdo the C# software he wrote which serves as a composition studio. The difficulty comes in getting a clean print for the disk. The ridges on the discs are 0.7mm so you’re going to need a well-aligned printer with fine resolution. [Fred] printed in both ABS and what he calls “Vero clear” plastic. The former works but he got better results with the latter.

3D Printed Guns, Laws And Regulations, And Philosophical Discussions On The Nature Of Printed Objects

For as long as they’ve been banded about, 3D printers were regarded as the path to a new economy, a method of distributed manufacturing, and a revolution for the current consumer culture. With every revolution, a few people need to get angry and the guys at Defense Distributed are doing their part to make that happen. They’re designing a handgun able to be printed on a hobbyist-level 3D printer

This isn’t the first time we’ve seen a 3D printable weapon; this 3D printed AR-15 lower receiver is the only part of an AR-15 that contains the ID markings and serial number. Legally, the AR lower is the gun, and requires a background check to purchase (with the footnote that this varies from state to state and country to country – long story short, the BATFE probably isn’t happy about a 3D printed AR lower). The one drawback of a 3D printed AR-15 lower is that every other part of the gun must be purchased elsewhere. This is where Defense Distributed comes in: they propose designing a gun that is 100% printable on a hobbist-level 3D printer such as a RepRap or Makerbot.

Right now, Defense Distributed is looking for funding to produce two gun designs. The first design, WikiWep A will serve as a research build, allowing Defense Distributed to answer a few questions on what can be built with a RepRap. WikiWep B will have moving parts for the firing action and very nearly all the parts will be printable on a RepRap or Makerbot.

In the video Defense Distributed put up for their now cancelled IndieGoGo campaign (available after the break), the guys talk about the distribution of a CAD file of completely 3D printable weapon being a threshold of a new economy where laws and regulations cease to apply. We’re not sure we agree with that statement; after all, anyone with some metal forming tools can build an excellent weapon to acquire another weapon, but we’re interested in seeing what governments and regulators will make of Defense Distributed’s project.

Continue reading “3D Printed Guns, Laws And Regulations, And Philosophical Discussions On The Nature Of Printed Objects”

Toorcamp: Type A Machines

Type A Machines designs and builds 3D printers in San Francisco. [Miloh], one of the founders, brought two of their flagship Series 1 printers to Toorcamp. He printed out a variety of models including water tight cups and quadcopter arms.

The RepRap Arduino MEGA Pololu Shield (RAMPS) is used to drive the stepper motors for each axis, as well as the extruder. This is attached to an Arduino MEGA running the Marlin RepRap firmware. Type A Machines ships the printer with Polylactic Acid (PLA) filament, which is biodegradable.

On software side, you start with a 3D model in STL format. This can be exported from 3D software such as Google SketchUp or Autodesk 123D. You then need a slicer to generate G-code and machine control software to command the printer. [Miloh] used Slic3r and Repetier for his workflow, but he also pointed out a good summary of 3D printer workflows.

The Series 1 was launched at the Bay Area Maker Faire this past May. It has a print volume of 1200 mL, which is the largest print volume of any desktop printer around. The Series 1 brings another option into the low-cost 3D printer market.