Drive For Show, Putt For Dough

Any golfer will attest that the most impressive looking part of the game—long drives—isn’t where the game is won. To really lower one’s handicap the most important skills to develop are in the short game, especially putting. Even a two-inch putt to close out a hole counts the same as the longest drive, so these skills are not only difficult to master but incredibly valuable. To shortcut some of the skill development, though, [Sparks and Code] broke most rules around the design of golf clubs to construct this robotic putter.

The putter’s goal is to help the golfer with some of the finesse required to master the short game. It can vary its striking force by using an electromagnet to lift the club face a certain amount, depending on the distance needed to sink a putt. Two servos lift the electromagnet and club, then when the appropriate height is reached the electromagnet turns off and the club swings down to strike the ball. The two servos can also oppose each other’s direction to help aim the ball as well, allowing the club to strike at an angle rather than straight on. The club also has built-in rangefinding and a computer vision system so it can identify the hole automatically and determine exactly how it should hit the ball. The only thing the user needs to do is press a button on the shaft of the club.

Even the most famous golfers will have problems putting from time to time so, if you’re willing to skirt the rules a bit, the club might be useful to have around. If not, it’s at least a fun project to show off on the golf course to build one’s credibility around other robotics enthusiasts who also happen to be golfers. If you’re looking for something to be more of a coach or aide rather than an outright cheat, though, this golf club helps analyze and perfect your swing instead of doing everything for you.

Continue reading “Drive For Show, Putt For Dough”

A Laser Aiming Module For First Person Hacking

You’ve perhaps noticed that [Jeremy Cook] is rather prolific on YouTube, regularly putting out videos on his latest and greatest creations. He wanted to add a head-mounted GoPro to his video production bag of tricks, but found it was a little trickier than expected to get the camera to point where he was actually looking. The solution? A 3D printed laser “sight” for the GoPro that let’s him zero it in while creating videos.

The idea here is very simple: put a small laser module on the same mount as the GoPro itself so you’ll have a handy red dot showing more or less where the camera is looking. The position of the red dot relative to the center-point of the camera’s field of view is going to vary slightly with range, but with something like a GoPro that’s shooting a very wide area to begin with, it’s not really a problem in practice.

Sounds like a good idea, but won’t that leave a weird red dot in all the videos? [Jeremy] is already ahead of you there, and added a small push button switch to the front of the module so he can quickly and easily turn the laser on and off. The idea is that he turns the laser on, gets the dot roughly where he wants the camera pointed, and then turns it back off.

[Jeremy] has put the STL files for the single-piece 3D printed module up on his GitHub for anyone who might find them useful. Besides the printed part, you just need to provide a suitably sized 3.7 V LiPo battery and the laser diode itself. If you need to find a good supply of cheap lasers, you might want to check the clearance rack at the big box store.

Continue reading “A Laser Aiming Module For First Person Hacking”

Crosshair Aiming System For Your Laser Cutter

diy_laser_crosshairs

[Rich] was having quite a bit of fun with his newly-acquired laser cutter, but was not impressed by the stock aiming laser that came with it. The problem with the built-in laser is that it did not actually follow the cutting laser’s path – instead, it has to be calibrated for a fixed focal length. This becomes problematic when engraving and cutting since they require different focal lengths, so it becomes a guessing game as to where the cutting laser will actually end up in respect to the aiming laser.

An additional optic module that solves this problem can be had for about $300, but after sinking $2500 into the laser setup, [Rich] was not inclined to purchase one. Instead, he bought a pair of cheap laser levels online and scavenged the line lens from one module, which was mounted on the laser cutter’s existing aiming laser. The second module was epoxied to the top of the cutting head, to create a set of cross hairs on the work surface.

As you can see in the video below, the hack works quite well, and the lasers are accurate at a variety of different focal lengths.

Continue reading “Crosshair Aiming System For Your Laser Cutter”