20 Pounds And A Gut Feeling Yields A Configurable Rubidium Atomic Clock Source

rubidium-source-for-twenty-pounds

So you see an image like this and the description “Aircraft stable oscillator” on an eBay listing for twenty pounds (about thirty bucks), what do you do? If you’re [Alecjw] you buy the thing and crack it open to find an atomic clock source inside. But he really went the distance with this one and figured out how to reconfigure the source from the way it was set up in the factory.

First off, the fact that it’s made for the aerospace industry means that the craftsmanship on it is simply fantastic. The enclosure is machined aluminum and all of the components are glued or otherwise attached to the boards to help them stand up to the high-vibrations often experienced on a plane. After quite a bit of disassembly [Alec] gets down to a black box which is labeled “Rubidium Frequency Standard”… jackpot! He had been hoping for a 10 MHz signal to use with his test equipment but when he hooked it up the source was putting out 800 kHz. With a bit more investigation he figured out how to reconfigure the support electronics to get that 10 Mhz source. We think you’re going to love reading about how he used a test crystal during the reconfiguration step.

Once he knew what he had he returned to the eBay seller and cleared out the rest of his stock.

[Thanks DIY DSP]

Tracking Commercial Aircraft With Salvaged Electronics

ads-b_air_traffic_tracking_station

Early last year, [Edward] started work on an aircraft tracking system using components from old electronics he had sitting around the house. As you may or may not know, most modern aircraft continuously broadcast their current position over the 1090MHz band using the ADS-B protocol. [Edward] found that his old satellite receiver module was able to pick up the signals without too much trouble, and was more than happy to share how he did it.

The whole project cost him just under 5 Euros and requires the aforementioned satellite tuner as well as an ATMega48 microcontroller to decode the ADS-B messages. When the receiver is hooked up to a nice aerial and preamp he can listen in on planes within a 200km radius, but even with a simple piece of wire, he can locate aircraft up to 25 km away.

Raw ADS-B data isn’t terribly useful, so [Edward] put together a small application that plots nearby aircraft on a map for him. We imagine that it wouldn’t be too incredibly difficult to do the same sort of thing with the Google Maps API as well.

If you’re interested in putting together an aircraft tracking receiver of your own, be sure to swing by his site – he has a ton of useful information that will likely be a huge help along the way.

[Thanks, David]

Clocks Built From Old Aircraft Surplus Parts

aircraft_indicator_clocks

A few years ago, Tube Clock forum member[Sine1040] bought a set of four brand new aircraft indicator units that were built some time in the early 70’s. He had no idea what the units were actually used for, but he did know that he could repurpose them into some pretty slick looking clocks.

He disassembled all four boxes and between them, scrounged enough parts to build three clocks. After gutting the clocks and rearranging the digits, he built a timekeeping circuit using an ATMega8 which is clocked by a DS32 oscillator.

While the time is displayed using the large projection-style digit displays, the seconds are ticked off in the left-most analog meter. Minutes are also represented in the clock’s right-most analog window, swinging the needle from top to bottom as each one passes.

[Sine1040] paid special attention to keeping the boxes looking as stock as possible, with the only external modification being a power plug installed in place of an old grounding screw. The clock is definitely a different take on keeping time, and we think it looks great.

Continue reading to see a quick demo video of the clock in action.

[Thanks Brian]

Continue reading “Clocks Built From Old Aircraft Surplus Parts”

Japanese Micro Planes

Some very well engineered micro planes(translated) have been buzzing around the net. The goal here is ultra light weight. These suped-up paper planes have a remarkable target weight of around 10 grams (translated). The lighter the micro plane is the slower and more maneuverable it will be leading to some pretty interesting and scary applications. For controls it looks like many of the planes are using infrared receivers/transmitters (much like you would find in a TV remote hint hint). Getting the lightest plane possible has forced the designers to come up with some pretty ingenious tricks. For example, instead of using packaged servos they use a coil of wire wrapped around a rare earth magnet to control the flaps. You can see these home made “servos” in action after the break.

Some have taken a more classic approach and used rubber band power instead of a li-po/motor combo.

[via Make]

Continue reading “Japanese Micro Planes”

FanWing Is Like A Harvester In The Sky

The FanWing aircraft concept has been around for a while but this is the first time we’ve seen working models. It gets rid of the propeller and adopts a rotating cylinder for propulsion. The look reminds us of a combine harvester and in a way it does reap the air, pulling the craft through the sky. We’re not holding our breath for the decommission of jet propulsion in the wake of this method, but we’d love to see some fun-loving death from above whenever you can get your own off the ground. Check out the video clips after the break to see, and hear, this in action.

Continue reading “FanWing Is Like A Harvester In The Sky”