Making An Aircraft Wing Work For An Audience

Many of us will have sat and idly watched the flaps and other moving parts of an airliner wing as we travel, and it’s likely that most of you will know the basics of how an aircraft wing works. But there’s more to an aircraft wing than meets the eye, which is why the Aerospace Bristol museum has an Airbus A320 wing on display. [Chris Lymas] was part of the team which turned a surplus piece of aircraft into an interactive and working exhibit, and he told the Electromagnetic Field audience all about it in his talk Using Arduinos to Resurrect an Airliner Wing.

The talk starts with an explanation of how a variable surface wing works, and then starts to talk about the control systems employed. We’re struck with the similarity to industrial robots, in that this is a a powerful and thus surprisingly dangerous machine to be close to. The various moving surfaces are moved by a series of shafts and gearboxes, driven by a DC motor. Running the show is an Arduino Mega, which has enough interfaces for all the various limit switches.

It’s fascinating to see how the moving parts in an airliner wing work up close, and we’re impressed at the scale of the parts which keep us safe as we fly. Take a look, the video is below the break.

Continue reading “Making An Aircraft Wing Work For An Audience”

Qantas Flight 32: When A Few Millimeters Of Metal Invite Disaster

A common saying is that every disaster is caused by a chain of events, some of which can stretch back by years. Airplane disasters and near-disasters are no exception here, with all too often a small mechanical issue worsening until suddenly everything goes south. In the best case the flight crew is still able to work through the problems and figure out a way to put the aircraft down on firm soil in a single piece. This was the situation that the crew of Qantas Flight 32 (QF32) found themselves forced to deal with, as detailed in a recent article by [Kyra Dempsey], aka [Admiral Cloudberg].

When QF32 started its flight from London Heathrow in early November of 2010, everything seemed normal, but a mere four minutes after take-off from a layover at Singapore on its way to its final destination of Sydney, the #2 engine on the left wing of the Airbus A380 essentially exploded, launching shrapnel through the wing and fuselage. Although the A380 has four engines (numbered 1-4 from the left wing tip) and normally a single engine failure is not a major deal, the loss of systems that got destroyed in the explosion left the crew scrambling to diagnose the damage and implement a solution.

Continue reading “Qantas Flight 32: When A Few Millimeters Of Metal Invite Disaster”

Ejector Seats: The Rocket Chairs That Save Lives

Once upon a time, escaping an aircraft was a tricky business. You had to unstrap yourself, fling open a heavy glass canopy, and try to wrench yourself out of a small opening without getting smacked by the tail or chopped up by the propeller. Many pilots failed this difficult task, to the tragic loss of their lives.

Eventually, the human cost was heavy enough and militaries grew strained at having to train new pilots to replace the experienced ones lost to accidents and enemy fire. The ejection seat was developed to make escaping a plane as simple as tucking yourself in and pulling a big red handle. Let’s dive in and learn how it came to be.

Continue reading “Ejector Seats: The Rocket Chairs That Save Lives”

A Look Inside A Vintage Aircraft Altimeter

There’s a strange synchronicity in the projects we see here at Hackaday, where different people come up with strikingly similar stuff at nearly the same time. We’re not sure why this is, but it’s easily observable, with this vintage altimeter teardown and repair by our good friend [CuriousMarc] as the latest example.

The altimeter that [Marc] dissects in the video below was made by Kollsman, which is what prompted us to recall this recent project that turned a jet engine tachometer into a CPU utilization gauge. That instrument was also manufactured by Kollsman, but was electrically driven. [Marc]’s project required an all-mechanical altimeter, so he ordered a couple from eBay.

Unfortunately, thanks to rough handling in transit they arrived in less than working condition, necessitating the look inside. For which we’re thankful, of course, because the guts of these aneroid altimeters are quite impressive. The mechanism is all mechanical, with parts that look like something [Click Spring] would make for a fine timepiece. [Marc]’s inspection revealed the problem: a broken pivot screw keeping the expansion and contraction of the aneroid diaphragms from transmitting force to the gear train that moves the needles. The repair was a little improvisational, with 0.5-mm steel balls used to stand in for the borked piece. It may not be flight ready, but it worked well enough to get the instrument back in action.

We suspect that [Marc] won’t be able to leave well enough alone on this one, so we’ll be on the lookout for a proper repair. In the meantime, he’ll be able to use this altimeter in the test setup he’s building to test a Bendix air data computer from a 1950s-era jet fighter. Continue reading “A Look Inside A Vintage Aircraft Altimeter”

Interfacing An Old Engine Cowl Flaps Indicator To USB

[Glen Akins] had a WW2-era aircraft engine cowl flap indicator lying around (as you do) and thought it would make a jolly fine USB-attached indicator. The model in question is a General Electric model 8DJ4PBV DC Selsyn, which was intended for four-engined aircraft. For those not familiar with the purpose [Glen] explains in his detailed writeup, that piston-engine aircraft of that era were air-cooled, and during conditions of maximum engine power — such as during take-off — flaps on the side of the engine cowling could be opened to admit additional cooling airflow. These indicator dials were connected to a sender unit on each of the flap actuators, providing the pilots an indication of the flaps’ positions. Continue reading “Interfacing An Old Engine Cowl Flaps Indicator To USB”

Rubber Band Behemoth Winds Its Way Toward World Record

Egged on by adoring fans who demanded more aircraft videos, [ProjectAir] has decided to break the world record for rubber band powered aircraft… despite having never built a rubber band powered aircraft. Why rubber band power?

Before little two stroke motors became affordable, and long before electric motors and batteries were remotely possible, there weren’t a lot of options for powering your model aircraft. One technology that really took off was that of rubber band power. By winding a rubber band, it could store enough energy to turn a propeller for a short duration. With a 10 foot model taking the current world record, as you can see in the video below the break [ProjectAir] decided to see if he could beat it.

Rubber Band Powered Free Flight c1915 By Unknown author

Starting with a successful free flight aircraft made of foam board, [ProjectAir] simply scaled it up to an eleven foot wing- one foot larger than the ten foot world record holder. Since there were now eight rubber band motors, a mechanism was created to release the propellers in sync, but this was problematic. Eventually a slightly heavy but solid solution was found.

[ProjectAir] did more testing, more problem solving, and through rapid iterations, he eventually was able to have a successful flight under radio control. His personal goal of a 12 second flight was exceeded, and then Guinness called! They’re interested in certifying his attempt as long as his plane can fly for at least 30 seconds- almost double his current ability. What will he do? Check the video, too, for [ProjectAir]’s challenge to the community to join him in trying to beat the world record. Sounds like fun!

Aside from powering world record attempting radio controlled aircraft, did you know that you can build a rubber band powered refrigerator? It’s true!

Continue reading “Rubber Band Behemoth Winds Its Way Toward World Record”

Ugliest Airplane Ever Built Predicted The Future

The airplane that many called “the flying barrel” is also widely considered the ugliest plane ever built. However, [Dark Skies] in the video you can see below argues that the Stipa-Caproni was the direct predecessor of the turbofan engine. Either way, it is an interesting and unique part of aviation history.

The plane was built in the days when inventors were experimenting with many different ways to improve aircraft utility and performance. In this case, the inventor built an “intubated propellor” which used a prop to draw air through a venturi tube in an effort to improve engine efficiency. The 570kg vehicle had a wingspan of just over 14 meters and was a bit more than 6 meters long. It could reach about 72 knots and climb to over 3 km.

Continue reading “Ugliest Airplane Ever Built Predicted The Future”