The Ultimate BRRRT Simulator: Fully Featured A-10 Warthog Cockpit

The Fairchild Republic A-10 “Warthog” with its 30 mm rotary cannon has captured the imagination of friendly soldiers and military aviation enthusiasts on the ground for as long as it’s been flying. One such enthusiast created the Warthog Project, a fully functional A-10 cockpit for Digital Combat Simulator, that’s almost an exact copy of the real thing.

It started as a four monitor gaming cockpit, with a Thrustmaster Warthog H.O.T.A.S. The first physical instrument panels were fuel and electrical panels bought through eBay, and over time more and more panels were added and eventually moved to dedicated left and right side units. All the panels communicate with the main PC over USB, either using Arduinos or purpose-made gaming interface boards. The Arduinos take input from switches and control knobs, but also run 7-segment displays and analog dials driven by servos. The panels were all laser-cut using MDF or perspex and backlit using LEDs.

The main instrument panel is a normal monitor masked with laser-cut MDF and Thrustmaster multi-function display bezels. The cockpit is run by the open source Helios Cockpit Simulator for DCS. The main monitors were replaced by a large custom-built curved projection panel lit up by a pair of projectors. It seems this is one of those projects that is never quite finished, and small details like a compass get added from time to time. Everything is documented in detail, and all the design files are available for free if you want to build your own.

We’ve seen a few impressive simulator cockpit builds from hardcore enthusiasts over the years, including a Boeing 737, P-51 Mustang, and even a Mech cockpit for Steel Battalion. Continue reading “The Ultimate BRRRT Simulator: Fully Featured A-10 Warthog Cockpit”

In-Band Signaling: Coded Squelch Systems

In the first part of our series on in-band signaling, we discussed one of the most common and easily recognizable forms of audio control, familiar to anyone who has dialed a phone in the last fifty years – dual-tone multifrequency (DTMF) dialing. Our second installment will look at an in-band signaling method that far fewer people have heard, precisely because it was designed to be sub-audible — coded squelch systems for public service and other radio services. Continue reading “In-Band Signaling: Coded Squelch Systems”

Modular Portable Conveyor Belt

When teaching Industrial Automation to students, you need to give them access to the things they will encounter in industry. Most subjects can be taught using computer programs or simulators — for example topics covering PLC, DCS, SCADA or HMI. But to teach many other concepts, you  need to have the actual hardware on hand to be able to understand the basics. For example, machine vision, conveyor belts, motor speed control, safety and interlock systems, sensors and peripherals all interface with the mentioned control systems and can be better understood by having hardware to play with. The team at [Absolutelyautomation] have published several projects that aim to help with this. One of these is the DIY conveyor belt with a motor speed control and display.

This is more of an initial, proof of concept project, and there is a lot of room for improvement. The build itself is straightforward. All the parts are standard, off the shelf items — stuff you can find in any store selling 3D printer parts. A few simple tools is all that’s required to put it together. The only tricky part of the build would likely be the conveyor belt itself. [Absolutelyautomation] offers a few suggestions, mentioning old car or truck tyres and elastic resistance bands used for therapy / exercise as options.

If you plan to replicate this, a few changes would be recommended. The 8 mm rollers could do with larger “drums” over them — about an inch or two in diameter. That helps prevent belt slippage and improves tension adjustment. It ought to be easy to 3D print the add-on drums. The belt might also need support plates between the rollers to prevent sag. The speed display needs to be in linear units — feet per minute or meters per minute, rather than motor rpm. And while the electronics includes a RS-485 interface, it would help to add RS-232, RS-422 and Ethernet in the mix.

While this is a simple build, it can form the basis for a series of add-ons and extensions to help students learn more about automation and control systems. Or maybe you want a conveyor belt in your basement, for some reason.

Continue reading “Modular Portable Conveyor Belt”