DNA Now Stands For Data And Knowledge Accumulation

Technology frequently looks at nature to make improvements in efficiency, and we may be nearing a new breakthrough in copying how nature stores data. Maybe some day your thumb drive will be your actual thumb. The entire works of Shakespeare could be stored in an infinite number of monkeys. DNA could become a data storage mechanism! With all the sensationalism surrounding this frontier, it seems like a dose of reality is in order.

The Potential for Greatness

The human genome, with 3 billion base pairs can store up to 750MB of data. In reality every cell has two sets of chromosomes, so nearly every human cell has 1.5GB of data shoved inside. You could pack 165 billion cells into the volume of a microSD card, which equates to 165 exobytes, and that’s if you keep all the overhead of the rest of the cell and not just the DNA. That’s without any kind of optimizing for data storage, too.

This kind of data density is far beyond our current digital storage capabilities. Storing nearly infinite data onto extremely small cells could change everything. Beyond the volume, there’s also the promise of longevity and replication, maintaining a permanent record that can’t get lost and is easily transferred (like medical records), and even an element of subterfuge or data transportation, as well as the ability to design self-replicating machines whose purpose is to disseminate information broadly.

So, where is the state of the art in DNA data storage? There’s plenty of promise, but does it actually work?

Continue reading “DNA Now Stands For Data And Knowledge Accumulation”

IndieGoGo Project Offers DNA Editing For The Home

CRISPR is the new darling of the genetics world, because it allows you to easily edit DNA. It is far more effective than previous techniques, being both precise and relatively easy to use. According to this IndieGoGo project, it is coming to your home lab soon. Genetic researchers love Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) because it allows you to very precisely edit a DNA strand. Using a protein called CAS9, CRISPR can find a very specific sequence in a DNA sequence and cut it. It occurs naturally in cells as part of the immune system: by finding and remembering parts of virus DNA, a cell can recognize and attack it when infected. For the genetics researcher, this allows them to insert new DNA sequences at specific points in the genes of any living cell.

Continue reading “IndieGoGo Project Offers DNA Editing For The Home”