IndieGoGo Project Offers DNA Editing For The Home

CRISPR is the new darling of the genetics world, because it allows you to easily edit DNA. It is far more effective than previous techniques, being both precise and relatively easy to use. According to this IndieGoGo project, it is coming to your home lab soon. Genetic researchers love Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) because it allows you to very precisely edit a DNA strand. Using a protein called CAS9, CRISPR can find a very specific sequence in a DNA sequence and cut it. It occurs naturally in cells as part of the immune system: by finding and remembering parts of virus DNA, a cell can recognize and attack it when infected. For the genetics researcher, this allows them to insert new DNA sequences at specific points in the genes of any living cell.

Continue reading “IndieGoGo Project Offers DNA Editing For The Home”

Gravity Pong Reaches Into the Sky

For a recent event [Norwegian Creations] decided to make something fun. They built what might just be the tallest free-standing gravity pong game out there. It’s 4.5m tall, and the LEDs in it draw over 100 amps!

What is Gravity Pong anyway? Well it’s a single person game where you get three “bounces”. A ball of light will drop from the top of the tube and the closer to the bounce-line you hit the button, the higher it will bounce. Your high score consists of how high you get the light — but if you miss the bounce line, you lose!

The structure itself is quite impressive. They’ve wrapped acrylic tubes with 1792 individually controllable RGB LEDs, in groups of four. Each section requires a power supply capable of putting out 27A @ 5V! The game is controlled by a Raspberry Pi 2 which controls a Pixelpusher to manipulate the LEDs. It’s connected to the Internet, so high scores can be automatically uploaded!

When it comes to pong though, we quite enjoy playing it with $5,000 construction crane controllers — because why not?

Continue reading “Gravity Pong Reaches Into the Sky”

Hackaday Links: November 8, 2015

[Burt Rutan] is someone who needs no introduction. Apparently, he likes the look of the Icon A5 and is working on his own version.

Earlier this week, the US Air Force lost a few satellites a minute after launch from Barking Sands in Hawaii. This was the first launch of the three stage, solid fueled SPARK rocket, although earlier versions were used to launch nuclear warheads into space. There are some great Army videos for these nuclear explosions in space, by the way.

[Alexandre] is working on an Arduino compatible board that has an integrated GSM module and WiFi chip. It’s called the Red Dragon, and that means he needs some really good board art. The finished product looks good in Eagle, and something we can’t wait to see back from the board house.

The Chippocolypse! Or however you spell it! TI is declaring a lot of chips EOL, and although this includes a lot of op-amps and other analog ephemera (PDF), the hi-fi community is reeling and a lot of people are stocking up on their favorite amplifiers.

[Jeremy] got tired of plugging jumper wires into a breadboard when programming his ATMega8 (including the ‘168 and ‘328) microcontrollers. The solution? A breadboard backpack that fits right over the IC. All the files are available, and the PCB can be found on Upverter.

In case you haven’t heard, we’re having a Super Conference in San Francisco later this week. Adafruit was kind enough to plug our plug for the con on Ask an Engineer last week.

KiCad Script Hack for Better Mechanical CAD Export

Open source EDA software KiCad has been gaining a lot of traction recently. CERN has been devoting resources to introduce many new advanced features such as differential pair tracks, push and shove routing and this plenty more scheduled in the pipeline. One important requirement of EDA packages is a seamless interface with mechanical CAD packages by exporting 3D models in industry common formats. This improves collaboration and allows further engineering designs such as enclosures and panels to be produced.

KiCad has had a 3D viewer available for quite a long time. But it uses the VRML mesh format (.wrl files) and there are compatibility issues which prevent it from rendering certain versions of VRML files. Moreover, the VRML mesh export is not particularly useful since it cannot be easily manipulated in mechanical CAD software. Recent versions of KiCad now offer IDFv3 format export – the Intermediate Data Format, a mechanical data exchange specification for the design and analysis of printed wiring assemblies. Taking advantage of this new feature, [Maurice] created KiCad StepUp – an export script that allows collaborative exchange between KiCad and FreeCAD.

A FreeCAD macro and a corresponding configuration file are added to the KiCad project folder. You start with .STEP files for all the components used in the KiCad design. The next step is to convert and save all .STEP files as .WRL format using FreeCAD. On the KiCad side, you use the .WRL files as usual. When you want to export the board, use the IDFv3 option in KiCad. When [Maurice]’s StepUp script is run (outside of KiCad) it replaces all instances of .WRL files with the equivalent .STEP versions and imports the board as well as the components in to FreeCAD as .STEP models. The result is a board and its populated components which can be manipulated as regular 3D objects.

Continue reading “KiCad Script Hack for Better Mechanical CAD Export”

Synth Secrets Exposed!

If you’re at all interested in synthesizers, but haven’t gotten as deep into programming them as you’d like, you absolutely need to check out the old “Synth Secrets” column from Sound on Sound magazine. Across 63(!) articles, the author [Gordon Reid] takes a practical approach to learning synthesizers: trying to copy the sound of one real instrument at a time, with concrete examples built up on one particular synthesizer.

synth_secrets_example[Gordon]’s approach to synthesis is straightforward, but that’s exactly what makes it useful. After the first couple articles, which introduce you to the common functions of many synthesizers, most articles follow a simple pattern: listen to the instrument’s characteristic sounds, look to the physics behind how it produces them, and then figure out how to replicate as much of the sound as is necessary (or possible) to capture the essence of the instrument. Sometimes when the instrument’s sounds are particularly complex, as in this series of articles on the violin, he’ll break this simple formula up across multiple articles.

Now you might complain that you don’t have a Korg MS-20 or an ARP Odyssey or whatever particular old synth is being used in any particular article. But the “Secrets” are actually so fundamental, and by-and-large worked out on such simple analog synths, that even if you can’t make exactly the same sounds as [Gordon] does, you’ll understand how he got where he got, you’ll probably get pretty close, and you’ll have tuned up your ears along the way.

Plus, you’ll learn a tremendous amount about the character and capabilities of your synthesizer by trying. Working through the “Synth Secrets” examples would be a great way to get to know a new synth in your rack, even if you’re only into space noise and not interested in reproducing real instruments.

But if you are into space noise, also check out our own Logic Noise series. You won’t learn anything about real instruments, but you’ll learn a heck of a lot about the 4000-series logic chips and the abuse thereof.

Thanks [Greg Kennedy] for reminding us of this gem, and for re-installing the “Synth Secrets” bee in our bonnet!

Friction Welding… Wood?

You’d think writing for Hackaday means we probably don’t get surprised very often by projects… but then we see something we never thought was possible — in this case, the linear friction welding of wood to join it.

Friction welding (also known as stir welding), is the process of taking two pieces of material (typically metal, or plastic), and vibrating one of them super fast while pushing against a stationary piece of the same material — the resulting friction causes a massive heat buildup that can then literally weld the two pieces of material together.

It’s an easy way to bond plastic parts together using a dremel and some 3D printing filament, and while doing it with metal is significantly harder, it is possible to do at home as well.

But according to the video after the break — it’s actually possible to do this with wood.

Continue reading “Friction Welding… Wood?”

Casting Turbines For A World Speed Record Motorcycle

[Anders] is going to beat the land speed record for a turbine-powered motorcycle. It’s a project he’s been working on for years now, and just this week, he put the finishing touches on the latest part of the build. He successfully cast the compressor for a gas turbine engine that’s twice as powerful as the one he has now.

This compressor piece was first 3D printed, and this print was used as a positive for a sand – or more specifically petrobond – mold. The material used in the casting is aluminum, fluxed and degassed, and with a relatively simple process, [Anders] came away with a very nice looking cast that only needs a little bit of milling, lathing, and welding to complete the part.

In the interests of accuracy, and just to make sure there’s no confusion, this ‘jet’ engine is actually a gas turbine, of which there are many configurations and uses. The proper nomenclature for this engine is a ‘turboshaft’ because the power is directed to a shaft which drives something else. This is not a new build; we’ve been covering [Anders]’ build for the better part of two years now, and although [Anders] intends to break the world record at the Bonneville salt flats eventually, he won’t be beating the ultimate land speed record – that title goes to a car – and he won’t be beating the speed record for all motorcycles. Instead, [Anders] plans to break the record for experimental propulsion motorcycles, or motorcycles powered by electric motors, steam, jet engines, or in this case, ‘turboshafts’.

It should also be noted that [Anders] frequently does not wear hearing or eye protection when testing his gas turbine engine. That is an exceedingly bad idea, and something that should not be attempted by anyone.

As an additional note for safety, in the video below of [Anders] pouring aluminum into his mold, the ground looks wet. This is terrifically dangerous, and steam explosions can kill and maim even innocent bystanders. This is not something that should be attempted by anyone, but we do thank [Anders] for sharing his project with us.

Continue reading “Casting Turbines For A World Speed Record Motorcycle”