A EuroRack synthesizer module with an oscilloscope in the background showing a waveform

Recreating The Sounds Of The ’90s With A YM3812 Synthesizer

One reason the x86 PC became the dominant game platform in the early 1990s was the availability of affordable sound cards like the AdLib and Sound Blaster. These provided a quantum leap in sound quality compared to the PC speaker’s tinny beeps, thanks to Yamaha’s YM3812 chip, also known as OPL2. [Tyler] has made a detailed study of the various OPL series chips and wrote a comprehensive guide describing their operation.

[Tyler] begins by explaining the theory of FM synthesis. The basic idea is that you generate sine waves of different frequencies, combine them through mixing and modulation, and then adjust their strength over time. This way, a few simple operations on the chip’s nine sound channels can generate an astonishing variety of sounds from clear notes to chaotic noise. He then delves into the details of the YM3812 chip, including its 279 different register settings that enable all these operations.

The final goal of [Tyler]’s research is the design of a YM3812 EuroRack module that fits inside standard modular synthesizers. He’ll go into detail on the board’s design and construction in future blog posts, but he already shows the finished product and demonstrates its features in the video embedded below. It’s a great introduction if you’re new to FM synthesis and want to recreate those magic DOS game sounds.

Of course, you can also just connect the OPL2 chip to your DOS computer, whether through a classic sound card or through a parallel port. The related YM2612 from the Sega Genesis also makes a fine synthesizer.

Continue reading “Recreating The Sounds Of The ’90s With A YM3812 Synthesizer”

Mechanizing A Eurorack Sequencer

Eurorack has taken over the synthesizer community, and hundreds of people are building their own eurorack modules. [Michael Forrest] designed and built his own Eurorack sequencer module that doesn’t use weird things like capacitors and chips to store a signal. Instead, he’s doing it with stepper motors and some clever engineering.

The basic idea of a Eurorack sequencer is to somehow store a series of values and play them back repeatedly. Connect that sequence to a clock, and you get the same pattern of sounds out of your synth. This can be done digitally with a circular buffer, in the analog domain with a bunch of FETs and caps, or in this case, on a piece of paper glued to a stepper motor.

The key bit of mechanism for this build is a stepper motor with 96 steps per rotation. This is important, because the module is controlled by a clock pulse from the sequencer. Since 96 is evenly divisible by 8 and 16, that means this sequencer will play back in 4/4 time. That NEMA 17 motor with 200 steps per resolution simply won’t work in this situation. Rather, it will technically work, but it’ll be unusable.

The electronics for this build are surprisingly simple, with an Arduino taking in the clock pulse and sending the step signals to an H-driver. The motor spins a paper disk, which is read with a photoresistor and a LED. It’s simple enough to be fun, and yes, it is mounted to a proper Eurorack-sized panel. You can check out the video of this build below.

Continue reading “Mechanizing A Eurorack Sequencer”

The Coolest Electronic Toys You’ll See At NAMM

Winter NAMM is the world’s largest trade show for musical instrument makers. It is a gear head’s paradise, filled to the brim with guitars, synths, amps, MIDI controllers, an impossibly loud section filled with drums, ukuleles, and all sorts of electronic noisemakers that generate bleeps and bloops. Think of it as CES, only with products people want to buy. We’re reporting no one has yet stuffed Alexa into a guitar pedal, by the way.

As with all trade shows, the newest gear is out, and it’s full of tech that will make your head spin. NAMM is the expression of an entire industry, and with that comes technical innovation. What was the coolest, newest stuff at NAMM? And what can hackers learn from big industry? There’s some cool stuff here, and a surprising amount we can use.

Continue reading “The Coolest Electronic Toys You’ll See At NAMM”