Pistol Safe’s Poor Design Means Biometric Sensor Bypassed In Seconds

When it comes to safes, mechanical design and physical layout are just as important as the electronic bits. If care isn’t taken, one element can undermine the other. That appears to be the case with this Amazon Basics branded biometric pistol safe. Because of the mechanical design, the fingerprint sensor can be overridden with nothing more than a thin piece of metal — no melted gummi bears and fingerprint impressions involved.

push button to reset safe fingerprint reader
Small button used to register a new fingerprint. It can be reached by inserting a thin shim in the gap between the door and the frame while the safe is closed and locked.

[LockPickingLawyer] has a reputation for exposing the lunacy of poorly-designed locks of all kinds and begins this short video (embedded below) by stating that when attempting to bypass the security of a device like this, he would normally focus on the mechanical lock. But in this case, it’s far more straightforward to simply subvert the fingerprint registration.

This is how it works: the back of the front panel (which is inside the safe) has a small button. When this button is pressed, the device will be instructed to register a new fingerprint. The security of that system depends on this button being inaccessible while the safe is closed. Unfortunately it’s placed poorly and all it takes is a thin piece of metal slid through the thin opening between the door and the rest of the safe. One press, and the (closed) safe is instructed to register and trust a new fingerprint. After that, the safe can be opened in the usual way.

It’s possible that a pistol being present in the safe might get in the way of inserting a metal shim to hit the button, but it doesn’t look like it. A metal lip in the frame, or recessing the reset button could prevent this attack. The sensor could also be instructed to reject reprogramming while the door is closed. In any case, this is a great demonstration of how design elements can affect one another, and have a security impact in the process.

As for fooling sensors in a more traditional sense, here’s a reminder that we’ve seen a 3D printer and a photo of a fingerprint used to defeat a fingerprint sensor.

Continue reading “Pistol Safe’s Poor Design Means Biometric Sensor Bypassed In Seconds”

Fooling Fingerprint Scanners With A Resin Printer

Biometrics have often been used as a form of access control. While this was initially limited to bank vaults in Hollywood movies, it’s now common to see such features on many laptops and smartphones. Despite the laundry list of reasons why this is a bad idea, the technology continues to grow in popularity. [darkshark] has shown us an easy exploit, using a 3D printer to fool the Galaxy S10’s fingerprint scanner.

The Galaxy S10 is interesting for its use of an ultrasonic fingerprint sensor, which continues to push to hardware development of phones minimal-to-no bezels by placing the sensor below the screen. The sensor is looking for the depth of the ridges of your fingerprint, while the touchscreen verifies the capacitive presence of your meaty digit. This hack satisfies both of those checks.

[darkshark] starts with a photograph of a fingerprint on a wineglass. This is then manipulated in Photoshop, before being used to create geometry in 3DSMAX to replicate the original finger. After making the part on an AnyCubic Photon LCD resin printer, the faux-finger pad is able to successfully unlock the phone by placing the print on the glass and touching your finger on top of it.ster

[darkshark] notes that the fingerprint was harvested at close range, but a camera with the right lenses could capture similar detail at a distance. The other thing to note is that if your phone is stolen, it’s likely covered in greasy fingerprints anyway. As usual, it serves as an excellent reminder that fingerprints are not passwords, and should not be treated as such. If you need to brush up on the fundamentals, we’ve got a great primer on how fingerprint scanners work, and another on why using fingerprints for security is a bad plan.

[via reddit, thanks to TheEngineer for the tip!]