Biometric Authentication with a Cheap USB Hub

It’s fair to say that fingerprints aren’t necessarily the best idea for device authentication, after all, they’re kind of everywhere. But in some cases, such as a device that never leaves your home, fingerprints are an appealing way to speed up repetitive logins. Unfortunately, fingerprint scanners aren’t exactly ubiquitous pieces of hardware yet. We wouldn’t hold out much hope for seeing a future Raspberry Pi with a fingerprint scanner sitting on top, for example.

Looking for a cheap way to add fingerprint scanning capabilities to his devices, [Nicholas] came up with a clever solution that is not only inexpensive, but multi-functional. By combining a cheap USB hub with a fingerprint scanner that was intended as a replacement part of a Thinkpad laptop, he was able to put together a biometric USB hub for around $5 USD.

After buying the Thinkpad fingerprint scanner, he wanted to make sure it would be detected by his computer as a standard USB device. The connector and pinout on the scanner aren’t standard, so he had to scrape off the plastic coating of the ribbon cable and do some probing with his multimeter to figure out what went where. Luckily, once he found the ground wire, the order of the rest of the connections were unchanged from normal USB.

When connected to up his Ubuntu machine, the Thinkpad scanner came up as a “STMicroelectronics Fingerprint Reader”, and could be configured with libpam-fprintd.

With the pintout and software configuration now known, all that was left was getting it integrated into the USB hub. One of the hub’s ports was removed and filled in with hot glue, and the fingerprint scanner connected in its place. A hole was then cut in the case of the hub for the scanner to peak out of. [Nicholas] mentions his Dremel is on loan to somebody else at the moment, and says he’ll probably try to clean the case and opening up a bit when he gets it back.

[Nicholas] was actually inspired to tackle this project based on a Hackaday post he read awhile back, so this one has truly come full circle. If you’d like to learn more about fingerprint scanning and the techniques being developed to improve it, we’ve got some excellent articles to get you started.

All I Want for Christmas is a 4-Factor Biometric Lock Box

It’s the most wonderful time of the year! No, we’re not talking about the holiday season, although that certainly has its merits. What we mean is that it’s time for the final projects from [Bruce Land]’s ECE4760 class. With the giving spirit and their mothers in mind, [Adarsh], [Timon], and [Cameron] made a programmable lock box with four-factor authentication. That’s three factors more secure than your average Las Vegas hotel room safe, and with a display to boot.

Getting into this box starts with a four-digit code on a number pad. If it’s incorrect, the display will say so. Put in the right code and the system will wait four seconds for the next step, which involves three potentiometers. These are tuned to the correct value with a leeway of +/- 30. After another four-second wait, it’s on to the piezo-based knock detector, which listens for the right pattern. Finally, a fingerprint scanner makes sure that anyone who wants into this box had better plan ahead.

This project is based on Microchip’s PIC32-based Microstick II, which [Professor Land] starting teaching in 2015. It also uses an Arduino Uno to handle the fingerprint scanner. The team has marketability in mind for this project, and in the video after the break, they walk through the factory settings and user customization.

We have seen many ways to secure a lock box. How about a laser-cut combination safe or a box with a matching NFC ring?

Continue reading “All I Want for Christmas is a 4-Factor Biometric Lock Box”

Finger Print Scanners Really Aren’t That Secure

Maybe you suspected this already, but researchers at MSU Computer Science just published a paper explaining just how easy it is to spoof a fingerprint scanner with a ink-jet printed scan of a finger.

We’re not talking about casting a new finger using superglue or anything, but rather using conductive ink you can literally print — on paper. A paper-printed-fingerprint that will unlock your smartphone. We’ve already told you fingerprints suck for security, but hopefully this drives the point home.

[Kai Cao] and [Anil K Jain] released this paper (Direct PDF link) outlining their technique. Using an existing scan of a fingerprint (which can be taken from your phone’s scanner), the image is mirrored, and then printed using a regular ink-jet printer, with all of its color cartridges replaced with AgIC4 silver conductive ink.
Continue reading “Finger Print Scanners Really Aren’t That Secure”

Biometric Secured Golfcart Allows For Keyless Start

Fingerprint Secured Golf Cart

Who uses keys these days, really? Introducing the world’s first(?) biometric secured golf cart. Gives “push to start” a whole new meaning!

[Ramicaza] lives in a small community where many families (including his!) use golf carts to commute short distances, like to the grocery store, or school. Tired of sharing a key between his parents and siblings, [Ramicaza] decided to soup up his ride with a fingerprint sensor allowing for key less start.

He’s using an ATtiny85 and a GT511-C1 finger print sensor from SparkFun. After throwing together a circuit on a breadboard and testing the concept he went straight to a PCB prototype for install in the cart. What we really like is the case he integrated into the golf cart’s dash. It features a flip-up lid which turns the circuit on when it is opened, and off when it is closed to save battery. Scan your finger and a relay triggers the ignition allowing you to drive away.

Continue reading “Biometric Secured Golfcart Allows For Keyless Start”